CN100403801C - A context-based adaptive entropy encoding/decoding method - Google Patents
A context-based adaptive entropy encoding/decoding method Download PDFInfo
- Publication number
- CN100403801C CN100403801C CNB2005101048530A CN200510104853A CN100403801C CN 100403801 C CN100403801 C CN 100403801C CN B2005101048530 A CNB2005101048530 A CN B2005101048530A CN 200510104853 A CN200510104853 A CN 200510104853A CN 100403801 C CN100403801 C CN 100403801C
- Authority
- CN
- China
- Prior art keywords
- context
- level
- run
- zero
- pairs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 15
- 230000008859 change Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 3
- 238000007906 compression Methods 0.000 abstract description 17
- 230000006835 compression Effects 0.000 abstract description 17
- 238000005516 engineering process Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 7
- 238000013179 statistical model Methods 0.000 abstract description 3
- 230000004927 fusion Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Images
Landscapes
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
一种基于上下文的自适应熵编/解码方法,编码时:扫描当前变换块中已被量化的DCT系数,由此形成(level,run)数对序列;然后按扫描的逆向顺序对数对序列中每一数对进行熵编码,在编码中,利用已被编码块中已完成编码的数对的值动态自适应构造上下文统计模型,同时,也提出一个上下文模型加权融合技术来进一步提高模型的压缩性能;用上一步骤所获得的上下文统计模型来驱动熵编码。基于上下文的自适应熵解码方法是编码方法的逆。本发明实现了利用不多的上下文状态数刻画长记忆马尔可夫模型,具有较高的压缩性能。
A context-based adaptive entropy encoding/decoding method, when encoding: scan the quantized DCT coefficients in the current transform block, thereby forming a (level, run) pair sequence; and then log the pair sequence in the reverse order of scanning Entropy encoding is performed on each pair of numbers in the coded block. In the encoding process, the value of the encoded number pair in the encoded block is used to dynamically and adaptively construct the context statistical model. At the same time, a context model weighted fusion technology is also proposed to further improve the model. Compression performance; entropy coding is driven by the context statistical model obtained in the previous step. The context-based adaptive entropy decoding method is the inverse of the encoding method. The invention realizes the description of the long-memory Markov model with a small number of context states, and has higher compression performance.
Description
技术领域 technical field
本发明涉及的技术领域是多媒体(图像,视频,音频)压缩及传输,特别是一种基于上下文建模的用于信号压缩的DCT系数自适应熵编/解码方法。本发明的目的在于改进DCT系数自适应熵编码时统计上下文模型的质量。在所有数据压缩技术和系统中,自适应熵编码起至关重要的作用,而自适应熵编码必须由统计上下文模型所驱动。统计上下文模型的好坏将最终决定整个系统的压缩性能。The technical field that the present invention relates to is multimedia (image, video, audio frequency) compression and transmission, especially a kind of DCT coefficient self-adaptive entropy encoding/decoding method for signal compression based on context modeling. The object of the present invention is to improve the quality of the statistical context model in adaptive entropy coding of DCT coefficients. In all data compression techniques and systems, adaptive entropy coding plays a crucial role, and adaptive entropy coding must be driven by statistical context models. The quality of the statistical context model will ultimately determine the compression performance of the entire system.
背景技术 Background technique
离散余弦变换(Discrete Cosine Transform,简称DCT)被广泛地应用于视频/图像/音频信号的压缩中。经过DCT变换,信号的统计和主观冗余性可以更好地被理解、利用和去除。因此,变换后的信号也更适于压缩。当前大多数的国际、国内信号压缩标准(如JPEG、MPEG、H.264、中国音频/视频标准(Audio video standard,简称AVS))均采用了在DCT变换域中进行编码的方式,这充分体现了DCT变换的有效性。然而DCT变换自身并不会产生任何数据量的减少,这是因为变换后系数的数目与信号原采样数是相同的。真正实现压缩效果的是DCT系数的熵编码过程。任何DCT系数的熵编码方法,如哈夫曼(Huffman)码、算术码,都必须利用对DCT系数概率分布的估计。Discrete Cosine Transform (DCT for short) is widely used in the compression of video/image/audio signals. After DCT transformation, the statistical and subjective redundancy of the signal can be better understood, utilized and removed. Therefore, the transformed signal is also more suitable for compression. Most of the current international and domestic signal compression standards (such as JPEG, MPEG, H.264, China Audio/Video Standard (AVS for short)) adopt the method of encoding in the DCT transform domain, which fully reflects the The effectiveness of the DCT transformation. However, the DCT transformation itself does not produce any reduction in the amount of data, because the number of transformed coefficients is the same as the original number of samples of the signal. What really achieves the compression effect is the entropy coding process of the DCT coefficients. Any entropy coding method of DCT coefficients, such as Huffman (Huffman) codes, arithmetic codes, must utilize the estimation of the probability distribution of DCT coefficients.
在一个实用的基于DCT的信号压缩系统中,DCT系数将按照某种约定的扫描顺序依次进行熵编码。最流行的扫描顺序之一是JPEG和MPEG标准中所采用的zigzag扫描。本发明中的方法具有通用性,可以适用于任何DCT系数的扫描顺序。In a practical DCT-based signal compression system, the DCT coefficients will be entropy-encoded sequentially according to a certain agreed scanning order. One of the most popular scan sequences is the zigzag scan employed in the JPEG and MPEG standards. The method in the present invention is universal and can be applied to any scanning order of DCT coefficients.
如果用x1,x2,…,xN代表扫描后的DCT系数序列,其中N反映DCT变换所采用的块的大小,那么编码该序列所需的最小码长为:If x 1 , x 2 ,..., x N represent the scanned DCT coefficient sequence, where N reflects the size of the block used for DCT transformation, then the minimum code length required to encode the sequence is:
其中,xi-1代表当前系数xi之前所有系数构成的序列{xi-1,xi-1,...x1}。如果条件概率P(xi|xi-1)已知,自适应算术编码可以趋近理想最小码长Lmin。在条件概率估计下,算术编码可以实现编码长度
以概率估计形式为体现的统计上下文模型是所有信号压缩系统的核心。模型质量即概率估计的精确度将最终决定压缩性能。Statistical context models in the form of probability estimates are at the heart of all signal compression systems. The quality of the model, i.e. the accuracy of the probability estimates, will ultimately determine the compression performance.
诺基亚(Nokia)于2001年针对H264标准参考模型TML85提出了一个对DCT系数块的(run,level)(level是非零残差系数,run代表当前非零系数与前一个非零系数之间的零系数个数)数对序列进行自适应二值算术编码的方法。该方法按照与数对扫描生成时“相同”的顺序依次对各数对进行编码,编码时仅用本系数块中最临近的level值构造上下文(一阶Markov模型)。针对该方法的公开号为US2004112683的专利公布了一种编码变换系数的方法,通过正、反两次扫描完成对DCT系数块的编码。在首次正向扫描中根据系数的物理频率位置构造上下文对系数的第一位面(即Significant Map)进行编码。在二次逆扫描中完成对非零系数其它位面的编码。但此方法没有刻画长记忆马尔可夫(Markov)模型,压缩性能相对较低.Nokia (Nokia) proposed a (run, level) for the DCT coefficient block in 2001 for the H264 standard reference model TML85 (level is a non-zero residual coefficient, run represents the zero between the current non-zero coefficient and the previous non-zero coefficient The number of coefficients) is a method for adaptive binary arithmetic coding of sequences. This method encodes each number pair sequentially in the "same" order as when the number pair is scanned and generated, and only uses the nearest level value in the coefficient block to construct the context (first-order Markov model) during encoding. The patent publication No. US2004112683 for this method discloses a method for encoding transform coefficients. The encoding of the DCT coefficient block is completed through two forward and reverse scans. In the first forward scan, the context is constructed according to the physical frequency position of the coefficient to encode the first bit plane (ie Significant Map) of the coefficient. The encoding of other bit-planes with non-zero coefficients is completed in the second inverse scan. However, this method does not describe the long-memory Markov model, and the compression performance is relatively low.
发明内容 Contents of the invention
本发明的目的在于针对上述现有编码技术存在的不足,提供一种基于上下文建模的用于信号压缩的DCT系数自适应熵编/解码方法,改进了现有DCT系数熵编/解码技术,为中国AVS提供一个高性能熵编码模块,使得中国AVS系统的整体性能达到甚至超过当前世界最先进视频压缩技术的水平。The purpose of the present invention is to address the shortcomings of the above-mentioned existing coding technology, provide a DCT coefficient adaptive entropy coding/decoding method for signal compression based on context modeling, improve the existing DCT coefficient entropy coding/decoding technology, Provide a high-performance entropy coding module for China AVS, making the overall performance of China AVS system reach or even exceed the level of the most advanced video compression technology in the world.
为实现上述目的,本发明采用了一种基于上下文建模的用于信号压缩的DCT系数自适应熵编/解码方法,其中,编码时,执行以下步骤:In order to achieve the above object, the present invention adopts a DCT coefficient adaptive entropy encoding/decoding method for signal compression based on context modeling, wherein, during encoding, the following steps are performed:
步骤1、扫描当前经过DCT变换和量化后的系数块,形成(level,run)数对序列,得到非零系数的个数值;初始化所述系数块的上下文模型;
步骤2、如果所述非零系数的个数值为零,则得到EOB信息(EOB为块结束标记End of Block),即一个(0,0)数对;如果所述非零系数的个数值不为零,则在扫描结果中查找所述非零系数个数位置上的(level,run)数对;
步骤3、如果对第一个系数编码,则根据空序列构造第一上下文;否则,根据所述系数块中已完成编码的所有数对构造第一上下文,并利用上下文加权方式,对当前level的绝对值进行熵编码;
步骤4、如果所述非零系数的个数为零则编码结束;否则,根据所述系数块中已完成编码的所有数对以及步骤3中所述已编码的level的绝对值,对level的符号位进行编码;
步骤5、根据所述系数块中已完成编码的所有数对以及步骤3与4中所述已编码的当前level的绝对值与符号位构造第二上下文,对run进行熵编码;
步骤6、对所述非零系数的数量值进行减1操作,执行步骤2。Step 6.
解码时,执行以下步骤:When decoding, perform the following steps:
步骤1、初始化第一、第二上下文模型;
步骤2、逆序扫描第一个(Level,Run)数对中Level幅值,根据第一上下文模型解码得到第一个Level幅值;
步骤3、如果所得到的Level幅值为零,则得到EOB信息,即一个(0,0)数对,执行步骤7;否则,执行步骤4;
步骤4、解码得到level的符号位;
步骤5、根据已完成解码的所有数对以及步骤2与3中刚解码的当前level的值构造第二上下文,解码得到Run;
步骤6、根据已完成解码的所有数对构造第一上下文,并利用上下文加权技术,解码得到下一个(Level,Run)数对中level的绝对值;执行步骤3;Step 6. Construct the first context according to all the pairs of numbers that have been decoded, and use context weighting technology to decode and obtain the absolute value of level in the next (Level, Run) number pair; perform
步骤7、根据所述解码得到的(Level,Run)数对序列恢复所述系数块。Step 7: Restoring the coefficient block according to the sequence of (Level, Run) pairs obtained through the decoding.
考虑到实用性和兼容性,本发明的技术细节向适于中国AVS基准版本的方向进行了细致调节,对现行中国AVS系统做出了自然而重大的改进扩展。Considering the practicability and compatibility, the technical details of the present invention have been carefully adjusted to the direction suitable for the Chinese AVS benchmark version, making a natural and significant improvement and extension to the current Chinese AVS system.
(1)本发明按照与数对扫描生成时“相反”的顺序依次对各数对进行编码,这一逆扫描序的编码顺序明显提高了上下文模型的有效性。(1) The present invention encodes each number pair sequentially according to the "reverse" order of the number pair scan generation, and the encoding order of this reverse scanning order obviously improves the effectiveness of the context model.
(2)同时,编码时利用本系数块中所有已完成编码的(level,run)数对构造上下文(高阶Markov模型),并创新性使用了上下文加权技术,该方法可以通过将多个上下文模型融合为一体来改进压缩性能。(2) At the same time, when encoding, use all the coded (level, run) pairs in this coefficient block to construct the context (higher-order Markov model), and innovatively use the context weighting technology. This method can combine multiple contexts The models are fused together to improve compression performance.
(3)本发明采用了一种创新的上下文量化方法,实现了利用不多的上下文状态数刻画长记忆马尔可夫模型,从而避免在刻画高阶马尔可夫模型时遭受上下文稀释问题的不良影响。(3) The present invention adopts an innovative context quantification method to realize the use of a small number of context states to describe the long-memory Markov model, thereby avoiding the adverse effects of the context dilution problem when describing the high-order Markov model .
本发明在实现上述目的时相对现有技术并没有增加计算复杂度,适合实时应用,并且与中国AVS基准视频编解码框架具有兼容性。Compared with the prior art, the present invention does not increase the computational complexity when realizing the above object, is suitable for real-time application, and has compatibility with the Chinese AVS benchmark video codec framework.
下面结合附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
附图说明 Description of drawings
图1是本发明的编码流程图;Fig. 1 is the encoding flowchart of the present invention;
图2是本发明的解码流程图;Fig. 2 is the decoding flowchart of the present invention;
图3是zig-zag扫描示例;Figure 3 is an example of zig-zag scanning;
图4是本发明对块系数的编码顺序。Fig. 4 is the encoding order of block coefficients in the present invention.
具体实施方式 Detailed ways
如图1、2所示为本发明的实施例一,具体编码步骤为:As shown in Figures 1 and 2, it is
步骤101、扫描当前经过DCT变换和量化后的系数块,形成(level,run)数对序列,得到非零系数的个数值;初始化所述系数块的上下文模型;
步骤102、如果所述非零系数的个数值为零,则得到EOB信息,即一个(0,0)数对;如果所述非零系数的个数值不为零,则在扫描结果中查找所述非零系数个数位置上的(level,run)数对;
步骤103、如果对第一个系数编码,则根据空序列构造第一上下文;否则,根据所述系数块中已完成编码的所有数对构造第一上下文,并利用上下文加权方式,对当前level的绝对值进行熵编码;构造第一上下文包括:定义两个随机变量,第一个随机变量用于记录本系数块中已完成编码的所有数对中level的幅值变化信息,第二个随机变量记录在当前待编码level在逆扫描序中的位置;根据所述两个随机变量,通过上下文加权构造第一上下文,利用不多的上下文状态描述长记忆马尔可夫模型;
步骤104、如果所述非零系数的个数为零则编码结束;否则,根据所述系数块中已完成编码的所有数对以及步骤3中刚编码的level的绝对值,对level的符号位进行编码;
步骤105、根据所述系数块中已完成编码的所有数对以及步骤3与4中刚编码的当前level的值构造第二上下文,对run进行熵编码;构造第二上下文包括:定义两个随机变量,第一个随机变量用于记录本系数块中已完成编码的所有数对中level的幅值变化信息,另一个记录步骤3中所述已编码的当前level的绝对值,通过这两个变量构造上下文对run进行编码;Step 105: Construct a second context according to all the pairs of numbers that have been encoded in the coefficient block and the value of the current level just encoded in
步骤106、对所述非零系数的数量值进行减1操作,执行步骤2。Step 106: Subtract 1 from the value of the non-zero coefficient, and execute
解码时,执行以下步骤:When decoding, perform the following steps:
步骤201、初始化上下文模型;
步骤202、逆序扫描的第一个(Level,Run)数对中Level幅值,根据上下文模型解码得到第一个Level幅值;
步骤203、如果所得到的Level幅值为零,则得到EOB信息,即一个(0,0)数对,执行步骤7;否则,执行步骤4;
步骤204、解码得到level的符号位;
步骤205、根据本系数块中已完成解码的所有数对以及步骤2与3中刚解码的当前level的值构造上下文,解码得到Run;
步骤206、根据本系数块中已完成解码的所有数对构造上下文,并利用上下文加权技术,解码得到下一个(Level,Run)数对中level的绝对值;执行步骤3;
步骤207、根据所述解码得到的(Level,Run)数对序列恢复所述系数块。Step 207: Restore the coefficient block according to the sequence of (Level, Run) pairs obtained through the decoding.
以下为本发明的实施例二,实施例2是本发明在中国AVS中的实施:The following is embodiment two of the present invention, and
对本实施例关键技术的描述:Description of the key technologies of this embodiment:
1、DCT系数块的扫描顺序与编码顺序:1. Scanning order and encoding order of DCT coefficient blocks:
DCT系数的扫描是一个将二维或多维DCT系数排列为一维序列的过程。所遵循的原则是使排列后系数为零的概率呈现递增规律。JPEG、MPEG中的经典zigzag扫描、中国AVS系数块的扫描以及H264中针对不同系数块大小、不同场/帧模式的扫描方式均遵循这一规律。Scanning of DCT coefficients is a process of arranging two-dimensional or multi-dimensional DCT coefficients into a one-dimensional sequence. The principle followed is to make the probability of the coefficients being zero after the arrangement show an increasing law. The classic zigzag scanning in JPEG and MPEG, the scanning of AVS coefficient blocks in China, and the scanning methods for different coefficient block sizes and different field/frame modes in H264 all follow this rule.
扫描后的一维系数随机序列近似满足为零概率递增的规律。转化为(level,run)数对后,我们按照扫描逆序及系数“非零”概率递增的顺序对每一数对进行编码。The scanned one-dimensional coefficient random sequence approximately satisfies the law of increasing probability of zero. After converting into (level, run) pairs, we encode each pair in the reverse order of scanning and in increasing order of coefficient "non-zero" probability.
2、待编码元素的二值化:2. Binarization of elements to be encoded:
在执行进行二值算术编码以前,首先需要把待编码元素:level和run的值转化为一系列的二值决定(Binary Decision)。Before performing binary arithmetic coding, it is first necessary to convert the values of the elements to be coded: level and run into a series of binary decisions (Binary Decision).
level为有符号整数。首先分离出符号位,用1比特“0/1”表示“+/-”;剩余的绝对值部分为非负整数,通过Unary表示实现二值化。如:-2的二值化为(1)001,+1的二值化为(0)01。level is a signed integer. Firstly, the sign bit is separated, and 1 bit "0/1" is used to represent "+/-"; the remaining absolute value part is a non-negative integer, and the binarization is realized through Unary representation. For example: the binarization of -2 is (1)001, and the binarization of +1 is (0)01.
run为无符号整数。直接通过Unary表示实现二值化。run is an unsigned integer. Binarization is realized directly through Unary representation.
表1:二值化实现Table 1: Binarization implementation
表1给出了对非负整数通过Unary表示进行二值化的结构。可以看到二值化的结果由前缀和后缀组成:前缀码为若干个0组成的字符串,后缀为末尾一个1;二值化后的字符串称为一个bin stfing,其中每个位置的0或1称为一个bin;Table 1 shows the structure of binarizing non-negative integers through Unary representation. It can be seen that the result of binarization is composed of a prefix and a suffix: the prefix code is a string composed of several 0s, and the suffix is a 1 at the end; the binarized string is called a bin stfing, in which 0 in each position Or 1 is called a bin;
3、上下文的定义和量化:3. Definition and quantification of context:
用非负整数变量Lmax纪录每一待编码(level,run)数对之前本系数块中已完成编码的最大level幅值。每一系数块编码前Lmax初始化为0。按表2所示将Lmax量化为5级选择Primary上下文序号。A non-negative integer variable Lmax is used to record the maximum level amplitude of each (level, run) number pair to be coded that has been coded in the previous coefficient block. Lmax is initialized to 0 before coding each coefficient block. As shown in Table 2, Lmax is quantized into 5 levels to select the Primary context number.
表2:Primary上下文的量化Table 2: Quantification of Primary Context
Lmax起到纪录本系数块的编码历史并对当前(level,run)数对按不同统计特性分类的效果。编码当前level和run的具体二值化结果时,不同的bin将根据表3进一步选定Secondary上下文序号。Lmax has the effect of recording the encoding history of the coefficient block and classifying the current (level, run) number pairs according to different statistical characteristics. When encoding the specific binarization results of the current level and run, different bins will further select the Secondary context number according to Table 3.
表3:Secondary上下文结构Table 3: Secondary context structure
编码每一个二值决定时,根据Primary上下文序号(0到4)和Secondary上下文序号(0到6)从共35个上下文中选择相应上下文,利用该上下文下的概率估计驱动算术编码器。When encoding each binary decision, select the corresponding context from a total of 35 contexts according to the primary context number (0 to 4) and the secondary context number (0 to 6), and use the probability estimation under the context to drive the arithmetic coder.
4、上下文加权方式:4. Context weighting method:
为进一步提高EOB信息的编码效率,ReverseP表示待编码的level在系数逆扫描顺序中的位置。每一系数块编码前Lmax初始化为0。对8×8DCT系数块,ReverseP限制于[0,63],均匀量化为32级作为伴随上下文序号。In order to further improve the coding efficiency of EOB information, ReverseP indicates the position of the level to be coded in the coefficient reverse scanning order. Lmax is initialized to 0 before coding each coefficient block. For 8×8 DCT coefficient blocks, ReverseP is limited to [0, 63], and uniformly quantized to 32 levels as the accompanying context sequence number.
对absLevel的第一个bin进行编码时,根据Primary上下文序号和Secondary上下序号(值为0)选择-个上下文,设该上下文下的概率估计为p1;根据ReverseP从32个伴随上下文中选择另一上下文,设该上下文下的概率估计为p2。以p1和p2的简单加权:(p1+p2)/2驱动二值算术编码器。When encoding the first bin of absLevel, select a context according to the Primary context number and the Secondary upper and lower numbers (value 0), and set the probability estimate under this context as p1; select another from 32 accompanying contexts according to ReverseP context, let the probability estimate under this context be p2. A binary arithmetic encoder is driven with a simple weighting of p1 and p2: (p1+p2)/2.
以下为实施例二的流程,具体编码流程为:The following is the process of
步骤1、扫描被编码DCT系数块,形成(level,run)数对序列,得到非零系数的个数,变量icoef表示非零系数的个数。对每个含有非零DCT系数的块,首先采用zigzag扫描,按照自左上到右下扫描顺序形成(level,run)数对序列,icoeff的值为7。编码时将按照数对序列形成的逆序依次编码每个数对的level和run,最后的(0,0)数对表示数据块编码的结束信息EOB;
图3是zigzag扫描示例,图4是本发明对块系数的编码顺序。Fig. 3 is an example of zigzag scanning, and Fig. 4 is an encoding sequence of block coefficients in the present invention.
步骤2、判断变量icoef的值是否为零,如果是,则给变量(level,run)赋值(0,0);如果变量icoef的值不为零,则查找扫描结果中第icoef位置上的(level,run)值;初始化上下文变量Lmax=0,ReverseP=0。icoeff的值减小为0时插入的(0,0)数对表示系数块结束信息EOB。
步骤3、根据本系数块中已完成编码的所有(level,run)数对构造上下文,并利用上下文加权技术,编码level的绝对值。根据当前level的值获得其绝对值absLevel的二值化表示。absLevel的二值化过程详见表1:由absLevel表示的系数幅值采用Unary表示进行二值化,即:若干个“0”作为前缀和一个“1”作为后缀,0的个数等于absLevel。
编码absLevel第一个bin的上下文模型:根据Lmax的值选择Primary上下文序号(表2),Secondary上下文序号为0;同时,根据ReverseP的值选择伴随上下文序号;应用上下文加权技术编码第一个bin。Encoding the context model of the first bin of absLevel: select the Primary context number according to the value of Lmax (Table 2), and the Secondary context number is 0; at the same time, select the accompanying context number according to the value of ReverseP; apply context weighting technology to encode the first bin.
编码absLevel其它bin的上下文模型:根据Lmax的值选择Primary上下文序号,再根据当前absLevel二值化后bin的位置选择Secondary上下文序号(见表3)进行编码。The context model for encoding other bins of absLevel: select the Primary context number according to the value of Lmax, and then select the Secondary context number (see Table 3) for encoding according to the position of the bin after the binarization of the current absLevel.
步骤4、如果变量icoef的值为零则编码结束。
步骤5、如果变量icoef的值不为零,则根据(level,run)值,对level的符号位进行编码;level的符号位采用等概率进行编码,若为负数,用二值算术编码器编码“1”,否则二值算术编码器编码“0”。
步骤6、根据本系数块中已完成编码的所有数对以及步骤104中刚编码的当前level的值构造上下文,对run进行编码。run的二值化过程见表l;根据Lmax的值选择Primary上下文序号,由当前编码的(level,run)数对中level的幅值以及当前编码的run的bin的位置选择Secondary上下文序号(见表3)进行编码;Step 6: Construct a context according to all the coded pairs in this coefficient block and the value of the current level just coded in
步骤7、对变量icoef的值进行减1操作;执行步骤2。Step 7. Subtract 1 from the value of the variable icoef; execute
表4:一个上下文模型号选择的实例Table 4: An example of context model number selection
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明请求保护的技术方案的范围当中。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention without limitation, although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that: the technology of the present invention can still be The schemes are modified or equivalently replaced without departing from the spirit and scope of the technical solutions of the present invention, and all of them shall be included in the scope of the technical solutions claimed in the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101048530A CN100403801C (en) | 2005-09-23 | 2005-09-23 | A context-based adaptive entropy encoding/decoding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101048530A CN100403801C (en) | 2005-09-23 | 2005-09-23 | A context-based adaptive entropy encoding/decoding method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1741616A CN1741616A (en) | 2006-03-01 |
CN100403801C true CN100403801C (en) | 2008-07-16 |
Family
ID=36093813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101048530A Expired - Fee Related CN100403801C (en) | 2005-09-23 | 2005-09-23 | A context-based adaptive entropy encoding/decoding method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100403801C (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101137047B (en) * | 2006-08-29 | 2010-09-15 | 昆山杰得微电子有限公司 | Method for analyzing and enhancing coding efficiency through effective residual error coefficient |
CN101290771B (en) * | 2007-04-20 | 2011-07-13 | 中兴通讯股份有限公司 | Bit consumption controlling method based on advanced audio decoder |
CA2871252C (en) * | 2008-07-11 | 2015-11-03 | Nikolaus Rettelbach | Audio encoder, audio decoder, methods for encoding and decoding an audio signal, audio stream and computer program |
WO2010063883A1 (en) * | 2008-12-03 | 2010-06-10 | Nokia Corporation | Switching between dct coefficient coding modes |
CN101646086B (en) * | 2009-08-21 | 2011-07-20 | 香港应用科技研究院有限公司 | Method and apparatus for context reference modeling for 4 x 4 block transform coefficient labeling |
WO2011130854A1 (en) * | 2010-04-19 | 2011-10-27 | Research In Motion Limited | Methods and devices for reordered parallel entropy coding and decoding |
CN104796711B (en) | 2011-01-06 | 2018-03-09 | 三星电子株式会社 | The coding method of video and the coding/decoding method and device of device and video |
CN104093018B (en) * | 2011-03-10 | 2017-08-04 | 华为技术有限公司 | Coding method of transform coefficient, decoding method of transform coefficient, and device |
CN102685503B (en) * | 2011-03-10 | 2014-06-25 | 华为技术有限公司 | Encoding method of conversion coefficients, decoding method of conversion coefficients and device |
CN104093020B (en) * | 2011-03-10 | 2017-11-17 | 华为技术有限公司 | The coding method of conversion coefficient, the coding/decoding method of conversion coefficient, and device |
WO2012149904A1 (en) * | 2011-05-04 | 2012-11-08 | Wu Xiaolin | Modeling method and system based on context in transform domain of image/video |
RS63053B1 (en) * | 2011-06-16 | 2022-04-29 | Ge Video Compression Llc | CONTEXT INITIALIZATION IN ENTHROPIC CODING |
MY193611A (en) | 2011-07-01 | 2022-10-20 | Samsung Electronics Co Ltd | Method and apparatus for entropy encoding using hierarchical data unit, and method and apparatus for decoding |
CN102256125B (en) * | 2011-07-14 | 2013-06-05 | 北京工业大学 | Context adaptive arithmetic coding method for HEVC (High Efficiency Video Coding) |
US9035807B2 (en) | 2011-08-25 | 2015-05-19 | Thomson Licensing | Hierarchical entropy encoding and decoding |
PT3145197T (en) * | 2011-10-31 | 2018-08-10 | Samsung Electronics Co Ltd | Method for determining a context model for transform coefficient level entropy decoding |
US9247257B1 (en) * | 2011-11-30 | 2016-01-26 | Google Inc. | Segmentation based entropy encoding and decoding |
KR101760438B1 (en) * | 2012-01-20 | 2017-07-31 | 지이 비디오 컴프레션, 엘엘씨 | Transform coefficient coding |
US9774856B1 (en) | 2012-07-02 | 2017-09-26 | Google Inc. | Adaptive stochastic entropy coding |
US9538175B2 (en) * | 2012-09-26 | 2017-01-03 | Qualcomm Incorporated | Context derivation for context-adaptive, multi-level significance coding |
US9509998B1 (en) | 2013-04-04 | 2016-11-29 | Google Inc. | Conditional predictive multi-symbol run-length coding |
US9392288B2 (en) | 2013-10-17 | 2016-07-12 | Google Inc. | Video coding using scatter-based scan tables |
CN105141966B (en) * | 2015-08-31 | 2018-04-24 | 哈尔滨工业大学 | The context modeling method of conversion coefficient in video compress |
EP4307683A4 (en) * | 2021-03-17 | 2025-03-05 | Guangdong Oppo Mobile Telecommunications Corp Ltd | METHOD FOR ENCODING/DECODING COEFFICIENTS, ENCODER, DECODER AND COMPUTER STORAGE MEDIUM |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1224978A (en) * | 1998-01-26 | 1999-08-04 | 大宇电子株式会社 | Context-based arithmetic encoding/decoding method and apparatus |
WO2003026307A2 (en) * | 2001-09-14 | 2003-03-27 | Siemens Aktiengesellschaft | Method for producing video coding and programme-product |
WO2003027940A1 (en) * | 2001-09-14 | 2003-04-03 | Nokia Corporation | Method and system for context-based adaptive binary arithmetic coding |
-
2005
- 2005-09-23 CN CNB2005101048530A patent/CN100403801C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1224978A (en) * | 1998-01-26 | 1999-08-04 | 大宇电子株式会社 | Context-based arithmetic encoding/decoding method and apparatus |
WO2003026307A2 (en) * | 2001-09-14 | 2003-03-27 | Siemens Aktiengesellschaft | Method for producing video coding and programme-product |
WO2003027940A1 (en) * | 2001-09-14 | 2003-04-03 | Nokia Corporation | Method and system for context-based adaptive binary arithmetic coding |
Also Published As
Publication number | Publication date |
---|---|
CN1741616A (en) | 2006-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100403801C (en) | A context-based adaptive entropy encoding/decoding method | |
KR101356733B1 (en) | Method and apparatus for Context Adaptive Binary Arithmetic Coding and decoding | |
CN101243611B (en) | Efficient coding and decoding of transform blocks | |
JP2023040013A (en) | Method and Apparatus for Video Encoding and Video Decoding Binary Sets Using Adaptive Tree Selection | |
US8483500B2 (en) | Run length coding with context model for image compression using sparse dictionaries | |
JP4313771B2 (en) | Method and apparatus for encoding transform coefficients in image and / or video encoder and decoder and corresponding computer program and corresponding computer readable storage medium | |
CN100488254C (en) | Entropy coding method and decoding method based on text | |
US7501964B2 (en) | Entropy coding for digital codecs | |
Le et al. | Mobilecodec: neural inter-frame video compression on mobile devices | |
US8576915B2 (en) | Position coding for context-based adaptive variable length coding | |
CN107710759A (en) | Method and device for the conversion coefficient encoding and decoding of non-square block | |
US20110033126A1 (en) | Method for improving the performance of embedded graphics coding | |
CN102473315A (en) | Method and apparatus for reusing tree structures to encode and decode binary sets | |
Arora et al. | Review of image compression techniques | |
KR20100089546A (en) | Method and apparatus for successively encoding/decoding image | |
Jain et al. | Image compression using discrete cosine transform and adaptive Huffman coding | |
CN100450181C (en) | An Embedded Image Compression Technology Based on Wavelet Transform | |
CN114731446A (en) | Coding concepts for sequences of information values | |
CN103607588A (en) | Residual error transformation coefficient significance map coding method based on template | |
WO2022193386A1 (en) | Coefficient encoding method and device, coefficient decoding method and device, terminal and storage medium | |
Chen et al. | Highly efficient entropy coding of multilevel images using a modified arithmetic code | |
CN100413343C (en) | A method and device for binarization decoding to obtain decoded data value | |
Bhosale et al. | A Modified Image Template for FELICS Algorithm for Lossless Image Compression | |
HK1227583A1 (en) | Methods and apparatus for video encoding and decoding binary sets using adaptive tree selection | |
HK1227583B (en) | Methods and apparatus for video encoding and decoding binary sets using adaptive tree selection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080716 Termination date: 20210923 |
|
CF01 | Termination of patent right due to non-payment of annual fee |