-
-
Notifications
You must be signed in to change notification settings - Fork 7.9k
Closed
Labels
Release criticalFor bugs that make the library unusable (segfaults, incorrect plots, etc) and major regressions.For bugs that make the library unusable (segfaults, incorrect plots, etc) and major regressions.topic: color/color & colormaps
Milestone
Description
on master....
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.scale as mscale
import matplotlib.colors as mcolors
#scale = mscale.SymmetricalLogScale(ax.xaxis, linthreshx=1.0)
fig, ax =plt.subplots()
ax.set_xscale('symlog', linthreshx=1.0, linscale=1)
ax.plot(np.arange(-100, 100, 0.1), np.arange(-100, 100, 0.1))
ax.set_xlim([-100, 100])
scale = ax.xaxis._scale
norm = mcolors.SymLogNorm(linthresh=1.0, linscale=1, vmin=-100, vmax=100)
xx = scale._transform.transform([-200, -100, -10, -1, -0.5, 0, 0.5, 1, 10, 100, 200])
print((xx - xx[1])/(xx[-2] - xx[1]))
print(norm([-200, -100, -10, -1, -0.5, 0, 0.5, 1, 10, 100, 200]))
fig, ax = plt.subplots()
ax.plot(norm([-200, -100, -10, -1, -0.5, 0, 0.5, 1, 10, 100, 200]), xx, '.')
ax.set_xlabel('Norm')
ax.set_ylabel('Scale')
yields
[-0.0483798207317112 0.0 0.1607142857142857 0.3214285714285714
0.4107142857142857 0.5 0.5892857142857143 0.6785714285714286
0.8392857142857143 1.0 1.0483798207317112] # scale
[-0.05601509 0. 0.1860781 0.3721562 0.4360781 0.5
0.5639219 0.6278438 0.8139219 1. 1.05601509] # Norm
I think scale is right, and norm is wrong...
Metadata
Metadata
Assignees
Labels
Release criticalFor bugs that make the library unusable (segfaults, incorrect plots, etc) and major regressions.For bugs that make the library unusable (segfaults, incorrect plots, etc) and major regressions.topic: color/color & colormaps