I found that I can make my machine spike in memory usage with just this: ```python import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator fig, ax = plt.subplots() ax.set_yscale('log') ax.yaxis.set_major_locator(MultipleLocator(100)) plt.savefig('test.png') ``` When I say huge, I mean I see memory usage go up and I kill it before I end up with an unresponsive system. Removing either of the log scaling or the `MultipleLocator` causes the huge memory spike to disappear.