OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
CombOS - Combinatorial Object Server, Generate graphs
P. Erdős, D. J. Kleitman, and B. L. Rothschild, Asymptotic enumeration of k_n-free graphs. In Colloquio Internazionale sulle Teorie Combinatorie, (Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17, pp. 19-27. Accad. Naz. Lincei, Rome.
Jérôme Kunegis, Jun Sun, and Eiko Yoneki, Guided Graph Generation: Evaluation of Graph Generators in Terms of Network Statistics, and a New Algorithm, arXiv:2303.00635 [cs.SI], 2023, p. 17.
Brendan McKay, Emails to N. J. A. Sloane, 1991
B. D. McKay, Isomorph-free exhaustive generation, J Algorithms, 26 (1998) 306-324.
W. Pu, J. Choi, and E. Amir, Lifted Inference On Transitive Relations, Workshops at the Twenty-Seventh AAAI Conference on Statistical Relational Artificial Intelligence, 2013.
Eric Weisstein's World of Mathematics, Triangle-Free Graph
FORMULA
Erdős, Kleitman, & Rothschild prove that a(n) = 2^(n^2/4 + o(n^2)) and a(n) = (1 + o(1/n))*A033995(n). - Charles R Greathouse IV, Feb 01 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
2 more terms (from the McKay paper) from Vladeta Jovovic, May 17 2008
2 more terms from Brendan McKay, Jan 12 2013
STATUS
approved