login
A006785
Number of triangle-free graphs on n vertices.
(Formerly M0841)
26
1, 2, 3, 7, 14, 38, 107, 410, 1897, 12172, 105071, 1262180, 20797002, 467871369, 14232552452, 581460254001, 31720840164950
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
CombOS - Combinatorial Object Server, Generate graphs
P. Erdős, D. J. Kleitman, and B. L. Rothschild, Asymptotic enumeration of k_n-free graphs. In Colloquio Internazionale sulle Teorie Combinatorie, (Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17, pp. 19-27. Accad. Naz. Lincei, Rome.
Jérôme Kunegis, Jun Sun, and Eiko Yoneki, Guided Graph Generation: Evaluation of Graph Generators in Terms of Network Statistics, and a New Algorithm, arXiv:2303.00635 [cs.SI], 2023, p. 17.
B. D. McKay, Isomorph-free exhaustive generation, J Algorithms, 26 (1998) 306-324.
W. Pu, J. Choi, and E. Amir, Lifted Inference On Transitive Relations, Workshops at the Twenty-Seventh AAAI Conference on Statistical Relational Artificial Intelligence, 2013.
Eric Weisstein's World of Mathematics, Triangle-Free Graph
FORMULA
Erdős, Kleitman, & Rothschild prove that a(n) = 2^(n^2/4 + o(n^2)) and a(n) = (1 + o(1/n))*A033995(n). - Charles R Greathouse IV, Feb 01 2018
CROSSREFS
Cf. A024607.
Row sums of A283417.
Sequence in context: A089790 A296417 A296418 * A274538 A113182 A165433
KEYWORD
nonn,more
EXTENSIONS
2 more terms (from the McKay paper) from Vladeta Jovovic, May 17 2008
2 more terms from Brendan McKay, Jan 12 2013
STATUS
approved