Skip to content

[mlir][linalg] Support pack consumer fusion with padding semantic for perfect tiling. #149600

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

hanhanW
Copy link
Contributor

@hanhanW hanhanW commented Jul 18, 2025

If the op does not generate extra padding values (i.e., destDimSize == ceilDiv(srcDimSize, innerTileSize)), it is valid to fuse the pack consumer op.

… perfect tiling.

If the op does not generate extra padding values (i.e.,
`destDimSize == ceilDiv(srcDimSize, innerTileSize)`), it is valid to
fuse the pack consumer op.

Signed-off-by: hanhanW <hanhan0912@gmail.com>
@llvmbot
Copy link
Member

llvmbot commented Jul 18, 2025

@llvm/pr-subscribers-mlir-linalg

Author: Han-Chung Wang (hanhanW)

Changes

If the op does not generate extra padding values (i.e., destDimSize == ceilDiv(srcDimSize, innerTileSize)), it is valid to fuse the pack consumer op.


Full diff: https://github.com/llvm/llvm-project/pull/149600.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp (+12-7)
  • (modified) mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir (+28-16)
diff --git a/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp b/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
index 28d99b130963a..441d7b219d782 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
@@ -932,13 +932,18 @@ struct PackOpTiling
           continue;
         }
 
-        // If the dimension needs padding, it is not supported because there are
-        // iterations that only write padding values to the whole tile. The
-        // consumer fusion is driven by the source, so it is not possible to map
-        // an empty slice to the tile.
-        bool needExtraPadding =
-            ShapedType::isDynamic(destDimSize) || !cstInnerSize ||
-            destDimSize * cstInnerSize.value() != srcDimSize;
+        // If the dimension needs extra padding, it is not supported because
+        // there are iterations that only write padding values to the whole
+        // tile. The consumer fusion is driven by the source, so it is not
+        // possible to map an empty slice to the tile. Extra padding is not a
+        // regular form, and the implementation is being conversative.
+        bool needExtraPadding = true;
+        if (!ShapedType::isDynamic(srcDimSize) &&
+            !ShapedType::isDynamic(destDimSize) && cstInnerSize) {
+          needExtraPadding =
+              destDimSize >
+              (srcDimSize + cstInnerSize.value() - 1) / cstInnerSize.value();
+        }
         // Prioritize the case that the op already says that it does not need
         // padding.
         if (!packOp.getPaddingValue())
diff --git a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
index cdbca7228ded3..ecce40d1657fe 100644
--- a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
+++ b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
@@ -596,15 +596,16 @@ module attributes {transform.with_named_sequence} {
 // -----
 
 // It is valid to fuse the pack op with padding semantics if the tiled
-// dimensions do not need padding.
+// dimensions do not need extra padding and it is a perfect tiling case.
 
 func.func @fuse_pack_consumer_with_padding_semantics(%arg0: tensor<64x32xf32>, %arg1: tensor<64x32xf32>) -> tensor<22x2x3x16xf32> {
-  %0 = scf.forall (%arg2) = (0) to (32) step (16) shared_outs(%arg3 = %arg1) -> (tensor<64x32xf32>) {
-    %src = tensor.extract_slice %arg0[0, %arg2] [64, 16] [1, 1] : tensor<64x32xf32> to tensor<64x16xf32>
-    %dest = tensor.extract_slice %arg3[0, %arg2] [64, 16] [1, 1] : tensor<64x32xf32> to tensor<64x16xf32>
-    %2 = linalg.exp ins(%src : tensor<64x16xf32>) outs(%dest : tensor<64x16xf32>) -> tensor<64x16xf32>
+  %0 = scf.forall (%arg2, %arg3) = (0, 0) to (64, 32) step (15, 16) shared_outs(%arg4 = %arg1) -> (tensor<64x32xf32>) {
+    %size = affine.min affine_map<(d0) -> (-d0 + 64, 15)>(%arg2)
+    %src = tensor.extract_slice %arg0[%arg2, %arg3] [%size, 16] [1, 1] : tensor<64x32xf32> to tensor<?x16xf32>
+    %dest = tensor.extract_slice %arg4[%arg2, %arg3] [%size, 16] [1, 1] : tensor<64x32xf32> to tensor<?x16xf32>
+    %2 = linalg.exp ins(%src : tensor<?x16xf32>) outs(%dest : tensor<?x16xf32>) -> tensor<?x16xf32>
     scf.forall.in_parallel {
-      tensor.parallel_insert_slice %2 into %arg3[0, %arg2] [64, 16] [1, 1] : tensor<64x16xf32> into tensor<64x32xf32>
+      tensor.parallel_insert_slice %2 into %arg4[%arg2, %arg3] [%size, 16] [1, 1] : tensor<?x16xf32> into tensor<64x32xf32>
     }
   }
   %1 = tensor.empty() : tensor<22x2x3x16xf32>
@@ -621,28 +622,39 @@ module attributes {transform.with_named_sequence} {
     transform.yield
   }
 }
-//      CHECK: #[[PACK_RESULT_MAP:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
+//  CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0) -> (-d0 + 64, 15)>
+//  CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0) -> (d0 floordiv 3)>
+//  CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0) -> (d0 ceildiv 3)>
+//  CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
 //      CHECK: func.func @fuse_pack_consumer_with_padding_semantics(
 // CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]
 // CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]
 //  CHECK-DAG:   %[[OUT_INIT:.*]] = tensor.empty() : tensor<22x2x3x16xf32>
 //  CHECK-DAG:   %[[PAD_VAL:.*]] = arith.constant 0.000000e+00 : f32
-//      CHECK:   %{{.*}}:2 = scf.forall (%[[IV:.*]]) = (0) to (32) step (16)
-// CHECK-SAME:      shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG1]], %[[PACK_OUT_ARG:.*]] = %[[OUT_INIT]])
-//      CHECK:      %[[ELEM_SRC:.*]] = tensor.extract_slice %[[ARG0]][0, %[[IV]]] [64, 16] [1, 1]
-//      CHECK:      %[[ELEM_DEST:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][0, %[[IV]]] [64, 16] [1, 1]
+//      CHECK:   %{{.*}}:2 = scf.forall (%[[I:.*]], %[[J:.*]]) = (0, 0) to (64, 32) step (15, 16)
+// CHECK-SAME:      shared_outs(%[[ELEM_OUT:.*]] = %[[ARG1]], %[[PACK_OUT:.*]] = %[[OUT_INIT]])
+//      CHECK:      %[[SIZE:.+]] = affine.min #[[MAP0]](%[[I]])
+//      CHECK:      %[[ELEM_SRC:.*]] = tensor.extract_slice %[[ARG0]]
+// CHECK-SAME:        [%[[I]], %[[J]]] [%[[SIZE]], 16] [1, 1]
+//      CHECK:      %[[ELEM_DEST:.*]] = tensor.extract_slice %[[ELEM_OUT]]
+// CHECK-SAME:        [%[[I]], %[[J]]] [%[[SIZE]], 16] [1, 1]
 //      CHECK:      %[[ELEM:.*]] = linalg.exp
 // CHECK-SAME:        ins(%[[ELEM_SRC]]
 // CHECK-SAME:        outs(%[[ELEM_DEST]]
-//  CHECK-DAG:      %[[PACK_RESULT_OFFSET:.*]] = affine.apply #[[PACK_RESULT_MAP]](%[[IV]])
-//  CHECK-DAG:      %[[TILED_PACK_DEST:.*]] = tensor.extract_slice %[[PACK_OUT_ARG]][0, %[[PACK_RESULT_OFFSET]], 0, 0] [22, 1, 3, 16] [1, 1, 1, 1]
-//      CHECK:      %[[TILED_PACK_OUT:.*]] = linalg.pack %[[ELEM]]
+//  CHECK-DAG:      %[[D0_OFFSET:.*]] = affine.apply #[[MAP1]](%[[I]])
+//  CHECK-DAG:      %[[D0_SIZE:.*]] = affine.apply #[[MAP2]](%[[SIZE]])
+//  CHECK-DAG:      %[[D1_OFFSET:.*]] = affine.apply #[[MAP3]](%[[J]])
+//  CHECK-DAG:      %[[PACK_INIT:.*]] = tensor.extract_slice %[[PACK_OUT]]
+// CHECK-SAME:        [%[[D0_OFFSET]], %[[D1_OFFSET]], 0, 0] [%[[D0_SIZE]], 1, 3, 16] [1, 1, 1, 1]
+//      CHECK:      %[[PACK:.*]] = linalg.pack %[[ELEM]]
 // CHECK-SAME:        padding_value(%[[PAD_VAL]] : f32)
 // CHECK-SAME:        inner_dims_pos = [0, 1] inner_tiles = [3, 16]
 // CHECK-SAME:        into %[[TILED_PACK_DEST]]
 //      CHECK:      scf.forall.in_parallel {
-//      CHECK:          tensor.parallel_insert_slice %[[GENERIC_OUT]] into %[[FIRST_OUT_ARG]][0, %[[IV]]] [64, 16] [1, 1]
-//      CHECK:          tensor.parallel_insert_slice %[[TILED_PACK_OUT]] into %[[PACK_OUT_ARG]][0, %[[PACK_RESULT_OFFSET]], 0, 0] [22, 1, 3, 16] [1, 1, 1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[ELEM]] into %[[ELEM_OUT]]
+// CHECK-SAME:            [%[[I]], %[[J]]] [%[[SIZE]], 16] [1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[PACK]] into %[[PACK_OUT]]
+// CHECK-SAME:            [%[[D0_OFFSET]], %[[D1_OFFSET]], 0, 0] [%[[D0_SIZE]], 1, 3, 16] [1, 1, 1, 1]
 
 // -----
 

@llvmbot
Copy link
Member

llvmbot commented Jul 18, 2025

@llvm/pr-subscribers-mlir

Author: Han-Chung Wang (hanhanW)

Changes

If the op does not generate extra padding values (i.e., destDimSize == ceilDiv(srcDimSize, innerTileSize)), it is valid to fuse the pack consumer op.


Full diff: https://github.com/llvm/llvm-project/pull/149600.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp (+12-7)
  • (modified) mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir (+28-16)
diff --git a/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp b/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
index 28d99b130963a..441d7b219d782 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
@@ -932,13 +932,18 @@ struct PackOpTiling
           continue;
         }
 
-        // If the dimension needs padding, it is not supported because there are
-        // iterations that only write padding values to the whole tile. The
-        // consumer fusion is driven by the source, so it is not possible to map
-        // an empty slice to the tile.
-        bool needExtraPadding =
-            ShapedType::isDynamic(destDimSize) || !cstInnerSize ||
-            destDimSize * cstInnerSize.value() != srcDimSize;
+        // If the dimension needs extra padding, it is not supported because
+        // there are iterations that only write padding values to the whole
+        // tile. The consumer fusion is driven by the source, so it is not
+        // possible to map an empty slice to the tile. Extra padding is not a
+        // regular form, and the implementation is being conversative.
+        bool needExtraPadding = true;
+        if (!ShapedType::isDynamic(srcDimSize) &&
+            !ShapedType::isDynamic(destDimSize) && cstInnerSize) {
+          needExtraPadding =
+              destDimSize >
+              (srcDimSize + cstInnerSize.value() - 1) / cstInnerSize.value();
+        }
         // Prioritize the case that the op already says that it does not need
         // padding.
         if (!packOp.getPaddingValue())
diff --git a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
index cdbca7228ded3..ecce40d1657fe 100644
--- a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
+++ b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
@@ -596,15 +596,16 @@ module attributes {transform.with_named_sequence} {
 // -----
 
 // It is valid to fuse the pack op with padding semantics if the tiled
-// dimensions do not need padding.
+// dimensions do not need extra padding and it is a perfect tiling case.
 
 func.func @fuse_pack_consumer_with_padding_semantics(%arg0: tensor<64x32xf32>, %arg1: tensor<64x32xf32>) -> tensor<22x2x3x16xf32> {
-  %0 = scf.forall (%arg2) = (0) to (32) step (16) shared_outs(%arg3 = %arg1) -> (tensor<64x32xf32>) {
-    %src = tensor.extract_slice %arg0[0, %arg2] [64, 16] [1, 1] : tensor<64x32xf32> to tensor<64x16xf32>
-    %dest = tensor.extract_slice %arg3[0, %arg2] [64, 16] [1, 1] : tensor<64x32xf32> to tensor<64x16xf32>
-    %2 = linalg.exp ins(%src : tensor<64x16xf32>) outs(%dest : tensor<64x16xf32>) -> tensor<64x16xf32>
+  %0 = scf.forall (%arg2, %arg3) = (0, 0) to (64, 32) step (15, 16) shared_outs(%arg4 = %arg1) -> (tensor<64x32xf32>) {
+    %size = affine.min affine_map<(d0) -> (-d0 + 64, 15)>(%arg2)
+    %src = tensor.extract_slice %arg0[%arg2, %arg3] [%size, 16] [1, 1] : tensor<64x32xf32> to tensor<?x16xf32>
+    %dest = tensor.extract_slice %arg4[%arg2, %arg3] [%size, 16] [1, 1] : tensor<64x32xf32> to tensor<?x16xf32>
+    %2 = linalg.exp ins(%src : tensor<?x16xf32>) outs(%dest : tensor<?x16xf32>) -> tensor<?x16xf32>
     scf.forall.in_parallel {
-      tensor.parallel_insert_slice %2 into %arg3[0, %arg2] [64, 16] [1, 1] : tensor<64x16xf32> into tensor<64x32xf32>
+      tensor.parallel_insert_slice %2 into %arg4[%arg2, %arg3] [%size, 16] [1, 1] : tensor<?x16xf32> into tensor<64x32xf32>
     }
   }
   %1 = tensor.empty() : tensor<22x2x3x16xf32>
@@ -621,28 +622,39 @@ module attributes {transform.with_named_sequence} {
     transform.yield
   }
 }
-//      CHECK: #[[PACK_RESULT_MAP:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
+//  CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0) -> (-d0 + 64, 15)>
+//  CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0) -> (d0 floordiv 3)>
+//  CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0) -> (d0 ceildiv 3)>
+//  CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
 //      CHECK: func.func @fuse_pack_consumer_with_padding_semantics(
 // CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]
 // CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]
 //  CHECK-DAG:   %[[OUT_INIT:.*]] = tensor.empty() : tensor<22x2x3x16xf32>
 //  CHECK-DAG:   %[[PAD_VAL:.*]] = arith.constant 0.000000e+00 : f32
-//      CHECK:   %{{.*}}:2 = scf.forall (%[[IV:.*]]) = (0) to (32) step (16)
-// CHECK-SAME:      shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG1]], %[[PACK_OUT_ARG:.*]] = %[[OUT_INIT]])
-//      CHECK:      %[[ELEM_SRC:.*]] = tensor.extract_slice %[[ARG0]][0, %[[IV]]] [64, 16] [1, 1]
-//      CHECK:      %[[ELEM_DEST:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][0, %[[IV]]] [64, 16] [1, 1]
+//      CHECK:   %{{.*}}:2 = scf.forall (%[[I:.*]], %[[J:.*]]) = (0, 0) to (64, 32) step (15, 16)
+// CHECK-SAME:      shared_outs(%[[ELEM_OUT:.*]] = %[[ARG1]], %[[PACK_OUT:.*]] = %[[OUT_INIT]])
+//      CHECK:      %[[SIZE:.+]] = affine.min #[[MAP0]](%[[I]])
+//      CHECK:      %[[ELEM_SRC:.*]] = tensor.extract_slice %[[ARG0]]
+// CHECK-SAME:        [%[[I]], %[[J]]] [%[[SIZE]], 16] [1, 1]
+//      CHECK:      %[[ELEM_DEST:.*]] = tensor.extract_slice %[[ELEM_OUT]]
+// CHECK-SAME:        [%[[I]], %[[J]]] [%[[SIZE]], 16] [1, 1]
 //      CHECK:      %[[ELEM:.*]] = linalg.exp
 // CHECK-SAME:        ins(%[[ELEM_SRC]]
 // CHECK-SAME:        outs(%[[ELEM_DEST]]
-//  CHECK-DAG:      %[[PACK_RESULT_OFFSET:.*]] = affine.apply #[[PACK_RESULT_MAP]](%[[IV]])
-//  CHECK-DAG:      %[[TILED_PACK_DEST:.*]] = tensor.extract_slice %[[PACK_OUT_ARG]][0, %[[PACK_RESULT_OFFSET]], 0, 0] [22, 1, 3, 16] [1, 1, 1, 1]
-//      CHECK:      %[[TILED_PACK_OUT:.*]] = linalg.pack %[[ELEM]]
+//  CHECK-DAG:      %[[D0_OFFSET:.*]] = affine.apply #[[MAP1]](%[[I]])
+//  CHECK-DAG:      %[[D0_SIZE:.*]] = affine.apply #[[MAP2]](%[[SIZE]])
+//  CHECK-DAG:      %[[D1_OFFSET:.*]] = affine.apply #[[MAP3]](%[[J]])
+//  CHECK-DAG:      %[[PACK_INIT:.*]] = tensor.extract_slice %[[PACK_OUT]]
+// CHECK-SAME:        [%[[D0_OFFSET]], %[[D1_OFFSET]], 0, 0] [%[[D0_SIZE]], 1, 3, 16] [1, 1, 1, 1]
+//      CHECK:      %[[PACK:.*]] = linalg.pack %[[ELEM]]
 // CHECK-SAME:        padding_value(%[[PAD_VAL]] : f32)
 // CHECK-SAME:        inner_dims_pos = [0, 1] inner_tiles = [3, 16]
 // CHECK-SAME:        into %[[TILED_PACK_DEST]]
 //      CHECK:      scf.forall.in_parallel {
-//      CHECK:          tensor.parallel_insert_slice %[[GENERIC_OUT]] into %[[FIRST_OUT_ARG]][0, %[[IV]]] [64, 16] [1, 1]
-//      CHECK:          tensor.parallel_insert_slice %[[TILED_PACK_OUT]] into %[[PACK_OUT_ARG]][0, %[[PACK_RESULT_OFFSET]], 0, 0] [22, 1, 3, 16] [1, 1, 1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[ELEM]] into %[[ELEM_OUT]]
+// CHECK-SAME:            [%[[I]], %[[J]]] [%[[SIZE]], 16] [1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[PACK]] into %[[PACK_OUT]]
+// CHECK-SAME:            [%[[D0_OFFSET]], %[[D1_OFFSET]], 0, 0] [%[[D0_SIZE]], 1, 3, 16] [1, 1, 1, 1]
 
 // -----
 

Comment on lines +935 to +946
// If the dimension needs extra padding, it is not supported because
// there are iterations that only write padding values to the whole
// tile. The consumer fusion is driven by the source, so it is not
// possible to map an empty slice to the tile. Extra padding is not a
// regular form, and the implementation is being conversative.
bool needExtraPadding = true;
if (!ShapedType::isDynamic(srcDimSize) &&
!ShapedType::isDynamic(destDimSize) && cstInnerSize) {
needExtraPadding =
destDimSize >
(srcDimSize + cstInnerSize.value() - 1) / cstInnerSize.value();
}
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is going to be hard if we allow extra padding. E.g., it could result in dynamic shape easily and it is known that the extra padding is not required after some tiling. I'm considering to restrict the semantics a little. I'm working on a local patch, and can send an RFC to discourse.

cc @MaheshRavishankar @Max191 @egebeysel @adam-smnk @banach-space

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Upstream prototype: #149624

Testing IREE downstream project here: iree-org/iree#21424

I'll take a look at the result on Monday.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants