Skip to content

Add support for APG (adaptive projected guidance) + unconditionnal SLG #593

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 53 additions & 14 deletions examples/cli/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -102,9 +102,15 @@ struct SDParams {
int upscale_repeats = 1;

std::vector<int> skip_layers = {7, 8, 9};
float slg_scale = 0.f;
float slg_scale = 0.0f;
float skip_layer_start = 0.01f;
float skip_layer_end = 0.2f;
bool slg_uncond = false;

float apg_eta = 1.0f;
float apg_momentum = 0.0f;
float apg_norm_threshold = 0.0f;
float apg_norm_smoothing = 0.0f;

bool chroma_use_dit_mask = true;
bool chroma_use_t5_mask = false;
Expand Down Expand Up @@ -204,13 +210,21 @@ void print_usage(int argc, const char* argv[]) {
printf(" --cfg-scale SCALE unconditional guidance scale: (default: 7.0)\n");
printf(" --img-cfg-scale SCALE image guidance scale for inpaint or instruct-pix2pix models: (default: same as --cfg-scale)\n");
printf(" --guidance SCALE distilled guidance scale for models with guidance input (default: 3.5)\n");
printf(" --apg-eta VALUE parallel projected guidance scale for APG (default: 1.0, recommended: between 0 and 1)\n");
printf(" --apg-momentum VALUE Momentum for guidance adjustments with APG (default: 0, recommended: around -0.5 (negative))\n");
printf(" --apg-nt VALUE APG norm threshold: Upper bound allowed for the amplitude (L2 norm) of guidance updates (default: 0 = disabled, recommended: 4-15)\n");
printf(" --apg-nt-smoothing VALUE EXPERIMENTAL! Norm threshold smoothing for APG, smoothly decrease the amplitude of the guidance update if it gets too close to the norm threshold (default: 0 = disabled)\n");
printf(" (replaces saturation with a smooth approximation)\n");
printf(" --slg-scale SCALE skip layer guidance (SLG) scale, only for DiT models: (default: 0)\n");
printf(" 0 means disabled, a value of 2.5 is nice for sd3.5 medium\n");
printf(" --eta SCALE eta in DDIM, only for DDIM and TCD: (default: 0)\n");
printf(" --slg-uncond Use CFG's forward pass for SLG instead of a separate pass, only for DiT models\n");
printf(" To use this, it's recommended to keep slg-scale to 0, both for performance and quality reasons\n");
printf(" This should be slightly faster than normal cfg when cfg_scale != 1.\n");
printf(" --skip-layers LAYERS Layers to skip for SLG steps: (default: [7,8,9])\n");
printf(" --skip-layer-start START SLG enabling point: (default: 0.01)\n");
printf(" --skip-layer-end END SLG disabling point: (default: 0.2)\n");
printf(" SLG will be enabled at step int([STEPS]*[START]) and disabled at int([STEPS]*[END])\n");
printf(" --eta SCALE eta in DDIM, only for DDIM and TCD: (default: 0)\n");
printf(" --strength STRENGTH strength for noising/unnoising (default: 0.75)\n");
printf(" --style-ratio STYLE-RATIO strength for keeping input identity (default: 20)\n");
printf(" --control-strength STRENGTH strength to apply Control Net (default: 0.9)\n");
Expand Down Expand Up @@ -412,7 +426,10 @@ void parse_args(int argc, const char** argv, SDParams& params) {
{"", "--slg-scale", "", &params.slg_scale},
{"", "--skip-layer-start", "", &params.skip_layer_start},
{"", "--skip-layer-end", "", &params.skip_layer_end},

{"", "--apg-eta", "", &params.apg_eta},
{"", "--apg-momentum", "", &params.apg_momentum},
{"", "--apg-nt", "", &params.apg_norm_threshold},
{"", "--apg-nt-smoothing", "", &params.apg_norm_smoothing},
};

options.bool_options = {
Expand All @@ -425,6 +442,7 @@ void parse_args(int argc, const char** argv, SDParams& params) {
{"", "--canny", "", true, &params.canny_preprocess},
{"-v", "--verbos", "", true, &params.verbose},
{"", "--color", "", true, &params.color},
{"", "--slg-uncond", "", true, &params.slg_uncond},
{"", "--chroma-disable-dit-mask", "", false, &params.chroma_use_dit_mask},
{"", "--chroma-enable-t5-mask", "", true, &params.chroma_use_t5_mask},
};
Expand Down Expand Up @@ -660,7 +678,20 @@ std::string get_image_params(SDParams params, int64_t seed) {
}
parameter_string += "Steps: " + std::to_string(params.sample_steps) + ", ";
parameter_string += "CFG scale: " + std::to_string(params.cfg_scale) + ", ";
if (params.apg_eta != 1) {
parameter_string += "APG eta: " + std::to_string(params.apg_eta) + ", ";
}
if (params.apg_momentum != 0) {
parameter_string += "CFG momentum: " + std::to_string(params.apg_momentum) + ", ";
}
if (params.apg_norm_threshold != 0) {
parameter_string += "CFG normalization threshold: " + std::to_string(params.apg_norm_threshold) + ", ";
if (params.apg_norm_smoothing != 0) {
parameter_string += "CFG normalization threshold: " + std::to_string(params.apg_norm_smoothing) + ", ";
}
}
if (params.slg_scale != 0 && params.skip_layers.size() != 0) {
parameter_string += "Unconditional SLG: " + std::string(params.slg_uncond ? "True" : "False") + ", ";
parameter_string += "SLG scale: " + std::to_string(params.cfg_scale) + ", ";
parameter_string += "Skip layers: [";
for (const auto& layer : params.skip_layers) {
Expand Down Expand Up @@ -733,17 +764,25 @@ int main(int argc, const char* argv[]) {

parse_args(argc, argv, params);

sd_guidance_params_t guidance_params = {params.cfg_scale,
params.img_cfg_scale,
params.min_cfg,
params.guidance,
{
params.skip_layers.data(),
params.skip_layers.size(),
params.skip_layer_start,
params.skip_layer_end,
params.slg_scale,
}};
sd_guidance_params_t guidance_params = {
params.cfg_scale,
params.img_cfg_scale,
params.min_cfg,
params.guidance,
{
params.skip_layers.data(),
params.skip_layers.size(),
params.skip_layer_start,
params.skip_layer_end,
params.slg_scale,
},
{
params.apg_eta,
params.apg_momentum,
params.apg_norm_threshold,
params.apg_norm_smoothing,
},
};

sd_set_log_callback(sd_log_cb, (void*)&params);

Expand Down
156 changes: 131 additions & 25 deletions stable-diffusion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -885,7 +885,7 @@ class StableDiffusionGGML {

bool has_unconditioned = img_cfg_scale != 1.0 && uncond.c_crossattn != NULL;
bool has_img_cond = cfg_scale != img_cfg_scale && img_cond.c_crossattn != NULL;
bool has_skiplayer = slg_scale != 0.0 && skip_layers.size() > 0;
bool has_skiplayer = (slg_scale != 0.0 || guidance.slg.uncond) && skip_layers.size() > 0;

// denoise wrapper
struct ggml_tensor* out_cond = ggml_dup_tensor(work_ctx, x);
Expand All @@ -898,7 +898,9 @@ class StableDiffusionGGML {
}
if (has_skiplayer) {
if (sd_version_is_dit(version)) {
out_skip = ggml_dup_tensor(work_ctx, x);
if (slg_scale != 0.0) {
out_skip = ggml_dup_tensor(work_ctx, x);
}
} else {
has_skiplayer = false;
LOG_WARN("SLG is incompatible with %s models", model_version_to_str[version]);
Expand All @@ -909,6 +911,10 @@ class StableDiffusionGGML {
}
struct ggml_tensor* denoised = ggml_dup_tensor(work_ctx, x);

std::vector<float> apg_momentum_buffer;
if (guidance.apg.momentum != 0)
apg_momentum_buffer.resize((size_t)ggml_nelements(denoised));

auto denoise = [&](ggml_tensor* input, float sigma, int step) -> ggml_tensor* {
if (step == 1) {
pretty_progress(0, (int)steps, 0);
Expand Down Expand Up @@ -968,6 +974,8 @@ class StableDiffusionGGML {
control_strength,
&out_cond);
}
int step_count = sigmas.size();
bool is_skiplayer_step = has_skiplayer && step > (int)(guidance.slg.layer_start * step_count) && step < (int)(guidance.slg.layer_end * step_count);

float* negative_data = NULL;
if (has_unconditioned) {
Expand All @@ -976,18 +984,36 @@ class StableDiffusionGGML {
control_net->compute(n_threads, noised_input, control_hint, timesteps, uncond.c_crossattn, uncond.c_vector);
controls = control_net->controls;
}
diffusion_model->compute(n_threads,
noised_input,
timesteps,
uncond.c_crossattn,
uncond.c_concat,
uncond.c_vector,
guidance_tensor,
ref_latents,
-1,
controls,
control_strength,
&out_uncond);
if (is_skiplayer_step && guidance.slg.uncond) {
LOG_DEBUG("Skipping layers at uncond step %d\n", step);
diffusion_model->compute(n_threads,
noised_input,
timesteps,
uncond.c_crossattn,
uncond.c_concat,
uncond.c_vector,
guidance_tensor,
ref_latents,
-1,
controls,
control_strength,
&out_uncond,
NULL,
skip_layers);
} else {
diffusion_model->compute(n_threads,
noised_input,
timesteps,
uncond.c_crossattn,
uncond.c_concat,
uncond.c_vector,
guidance_tensor,
ref_latents,
-1,
controls,
control_strength,
&out_uncond);
}
negative_data = (float*)out_uncond->data;
}

Expand All @@ -1008,10 +1034,8 @@ class StableDiffusionGGML {
img_cond_data = (float*)out_img_cond->data;
}

int step_count = sigmas.size();
bool is_skiplayer_step = has_skiplayer && step > (int)(guidance.slg.layer_start * step_count) && step < (int)(guidance.slg.layer_end * step_count);
float* skip_layer_data = NULL;
if (is_skiplayer_step) {
if (is_skiplayer_step && slg_scale != 0.0) {
LOG_DEBUG("Skipping layers at step %d\n", step);
// skip layer (same as conditionned)
diffusion_model->compute(n_threads,
Expand All @@ -1034,6 +1058,87 @@ class StableDiffusionGGML {
float* vec_input = (float*)input->data;
float* positive_data = (float*)out_cond->data;
int ne_elements = (int)ggml_nelements(denoised);

float* deltas = vec_denoised;

// APG: https://arxiv.org/pdf/2410.02416

bool log_cfg_norm = false;
const char* SD_LOG_CFG_DELTA_NORM = getenv("SD_LOG_CFG_DELTA_NORM");
if (SD_LOG_CFG_DELTA_NORM != nullptr) {
std::string sd_log_cfg_norm_str = SD_LOG_CFG_DELTA_NORM;
if (sd_log_cfg_norm_str == "ON" || sd_log_cfg_norm_str == "TRUE") {
log_cfg_norm = true;
} else if (sd_log_cfg_norm_str != "OFF" && sd_log_cfg_norm_str != "FALSE") {
LOG_WARN("SD_LOG_CFG_DELTA_NORM environment variable has unexpected value. Assuming default (\"OFF\"). (Expected \"ON\"/\"TRUE\" or\"OFF\"/\"FALSE\", got \"%s\")", SD_LOG_CFG_DELTA_NORM);
}
}
float apg_scale_factor = 1.;
float diff_norm = 0;
float cond_norm_sq = 0;
float dot = 0;
if (has_unconditioned || has_img_cond) {
for (int i = 0; i < ne_elements; i++) {
float delta;
if (has_img_cond) {
if (cfg_scale == 1) {
// Weird guidance (important: use img_cfg_scale instead of cfg_scale in the final formula)
delta = img_cond_data[i] - negative_data[i];
} else if (has_unconditioned) {
// 2-conditioning CFG (img_cfg_scale != cfg_scale != 1)
delta = positive_data[i] + (negative_data[i] * (1 - img_cfg_scale) + img_cond_data[i] * (img_cfg_scale - cfg_scale)) / (cfg_scale - 1);
} else {
// pure img CFG (img_cfg_scale == 1, cfg_scale !=1)
delta = positive_data[i] - img_cond_data[i];
}
} else {
// classic CFG (img_cfg_scale == cfg_scale != 1)
delta = positive_data[i] - negative_data[i];
}
if (guidance.apg.momentum != 0) {
delta += guidance.apg.momentum * apg_momentum_buffer[i];
apg_momentum_buffer[i] = delta;
}
if (guidance.apg.norm_treshold > 0 || log_cfg_norm) {
diff_norm += delta * delta;
}
if (guidance.apg.eta != 1.0f) {
cond_norm_sq += positive_data[i] * positive_data[i];
dot += positive_data[i] * delta;
}
deltas[i] = delta;
}
if (log_cfg_norm) {
LOG_INFO("CFG Delta norm: %.2f", sqrtf(diff_norm));
}
if (guidance.apg.norm_treshold > 0) {
diff_norm = sqrtf(diff_norm);
if (guidance.apg.norm_treshold_smoothing <= 0) {
apg_scale_factor = std::min(1.0f, guidance.apg.norm_treshold / diff_norm);
} else {
// Experimental: smooth saturate
float x = guidance.apg.norm_treshold / diff_norm;
apg_scale_factor = x / std::pow(1 + std::pow(x, 1.0 / guidance.apg.norm_treshold_smoothing), guidance.apg.norm_treshold_smoothing);
}
}
if (guidance.apg.eta != 1.0f) {
dot *= apg_scale_factor;
// pre-normalize (avoids one square root and ne_elements extra divs)
dot /= cond_norm_sq;
}

for (int i = 0; i < ne_elements; i++) {
deltas[i] *= apg_scale_factor;
if (guidance.apg.eta != 1.0f) {
float apg_parallel = dot * positive_data[i];
float apg_orthogonal = deltas[i] - apg_parallel;

// tweak deltas
deltas[i] = apg_orthogonal + guidance.apg.eta * apg_parallel;
}
}
}

for (int i = 0; i < ne_elements; i++) {
float latent_result = positive_data[i];
if (has_unconditioned) {
Expand All @@ -1043,19 +1148,19 @@ class StableDiffusionGGML {
int64_t i3 = i / out_cond->ne[0] * out_cond->ne[1] * out_cond->ne[2];
float scale = min_cfg + (cfg_scale - min_cfg) * (i3 * 1.0f / ne3);
} else {
if (has_img_cond) {
// out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)
latent_result = negative_data[i] + img_cfg_scale * (img_cond_data[i] - negative_data[i]) + cfg_scale * (positive_data[i] - img_cond_data[i]);
} else {
// img_cfg_scale == cfg_scale
latent_result = negative_data[i] + cfg_scale * (positive_data[i] - negative_data[i]);
float delta = deltas[i];

if (cfg_scale != 1) {
latent_result = positive_data[i] + (cfg_scale - 1) * delta;
} else if (has_img_cond) {
latent_result = positive_data[i] + (img_cfg_scale - 1) * delta;
}
}
} else if (has_img_cond) {
// img_cfg_scale == 1
latent_result = img_cond_data[i] + cfg_scale * (positive_data[i] - img_cond_data[i]);
}
if (is_skiplayer_step) {
if (is_skiplayer_step && slg_scale != 0.0) {
latent_result = latent_result + (positive_data[i] - skip_layer_data[i]) * slg_scale;
}
// v = latent_result, eps = latent_result
Expand Down Expand Up @@ -1096,7 +1201,8 @@ class StableDiffusionGGML {
}

// ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding
ggml_tensor* get_first_stage_encoding(ggml_context* work_ctx, ggml_tensor* moments) {
ggml_tensor*
get_first_stage_encoding(ggml_context* work_ctx, ggml_tensor* moments) {
// ldm.modules.distributions.distributions.DiagonalGaussianDistribution.sample
ggml_tensor* latent = ggml_new_tensor_4d(work_ctx, moments->type, moments->ne[0], moments->ne[1], moments->ne[2] / 2, moments->ne[3]);
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, latent);
Expand Down
9 changes: 9 additions & 0 deletions stable-diffusion.h
Original file line number Diff line number Diff line change
Expand Up @@ -152,14 +152,23 @@ typedef struct {
float layer_start;
float layer_end;
float scale;
bool uncond;
} sd_slg_params_t;

typedef struct {
float eta;
float momentum;
float norm_treshold;
float norm_treshold_smoothing;
} sd_apg_params_t;

typedef struct {
float txt_cfg;
float img_cfg;
float min_cfg;
float distilled_guidance;
sd_slg_params_t slg;
sd_apg_params_t apg;
} sd_guidance_params_t;

typedef struct {
Expand Down
Loading