Skip to content

Commit d616310

Browse files
author
杨世超
committed
Update 1227. 飞机座位分配概率.md
1 parent c6ab45f commit d616310

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

Solutions/1227. 飞机座位分配概率.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -39,29 +39,29 @@
3939

4040
那么综合上面情况,可以得到 $f(n),(n \ge 3)$ 的递推式:
4141

42-
$\begin{align} f(n) & = \frac{1}{n} * 1.0 + \frac{1}{n} * 0.0 + \frac{1}{n} * \sum_{i = 2}^{n-1} f(n - i + 1) \\ & = \frac{1}{n} (1.0 + \sum_{i = 2}^{n-1} f(n - i + 1)) \end{align} $
42+
$\begin{aligned} f(n) & = \frac{1}{n} * 1.0 + \frac{1}{n} * 0.0 + \frac{1}{n} * \sum_{i = 2}^{n-1} f(n - i + 1) \cr & = \frac{1}{n} (1.0 + \sum_{i = 2}^{n-1} f(n - i + 1)) \end{aligned} $
4343

4444
接下来我们从等式中寻找规律,消去 $\sum_{i = 2}^{n-1} f(n - i + 1))$ 部分。
4545

4646
将 $n$ 换为 $n - 1$,得:
4747

48-
$\begin{align} f(n - 1) & = \frac{1}{n - 1} * 1.0 + \frac{1}{n - 1} * 0.0 + \frac{1}{n - 1} * \sum_{i = 2}^{n-2} f(n - i) \\ & = \frac{1}{n - 1} (1.0 + \sum_{i = 2}^{n-2} f(n - i)) \end{align} $
48+
$\begin{align} f(n - 1) & = \frac{1}{n - 1} * 1.0 + \frac{1}{n - 1} * 0.0 + \frac{1}{n - 1} * \sum_{i = 2}^{n-2} f(n - i) \cr & = \frac{1}{n - 1} (1.0 + \sum_{i = 2}^{n-2} f(n - i)) \end{align} $
4949

5050
将 $f(n) * n$ 与 $f(n - 1) * (n - 1)$ 进行比较:
5151

52-
$\begin{align} f(n) * n & = 1.0 + \sum_{i = 2}^{n-1} f(n - i + 1)) & (1) \\ f(n - 1) * (n - 1) & = 1.0 + \sum_{i = 2}^{n-2} f(n - i) & (2) \end{align}$
52+
$\begin{aligned} f(n) * n & = 1.0 + \sum_{i = 2}^{n-1} f(n - i + 1)) & (1) \cr f(n - 1) * (n - 1) & = 1.0 + \sum_{i = 2}^{n-2} f(n - i) & (2) \end{aligned}$
5353

5454
将上述 (1)、(2) 式相减得:
5555

56-
$\begin{align} & f(n) * n - f(n - 1) * (n - 1) & \\ = & \sum_{i = 2}^{n-1} f(n - i + 1) - \sum_{i = 2}^{n-2} f(n - i) \\ = & f(n-1) \end{align}$
56+
$\begin{align} & f(n) * n - f(n - 1) * (n - 1) & \cr = & \sum_{i = 2}^{n-1} f(n - i + 1) - \sum_{i = 2}^{n-2} f(n - i) \cr = & f(n-1) \end{align}$
5757

5858
整理后得:$f(n) = f(n - 1)$。
5959

6060
已知 $f(1) = 1$,$f(2) = 0.5$,因此当 $n \ge 3$ 时,$f(n) = 0.5$。
6161

6262
所以可以得出结论:
6363

64-
$f(n) = \begin{cases} 1.0 & n = 1 \\ 0.5 & n \ge 2 \end{cases}$
64+
$f(n) = \begin{cases} 1.0 & n = 1 \cr 0.5 & n \ge 2 \end{cases}$
6565

6666
## 代码
6767

0 commit comments

Comments
 (0)