File tree Expand file tree Collapse file tree 1 file changed +5
-5
lines changed Expand file tree Collapse file tree 1 file changed +5
-5
lines changed Original file line number Diff line number Diff line change 39
39
40
40
那么综合上面情况,可以得到 $f(n),(n \ge 3)$ 的递推式:
41
41
42
- $\begin{align } f(n) & = \frac{1}{n} * 1.0 + \frac{1}{n} * 0.0 + \frac{1}{n} * \sum_ {i = 2}^{n-1} f(n - i + 1) \\ & = \frac{1}{n} (1.0 + \sum_ {i = 2}^{n-1} f(n - i + 1)) \end{align } $
42
+ $\begin{aligned } f(n) & = \frac{1}{n} * 1.0 + \frac{1}{n} * 0.0 + \frac{1}{n} * \sum_ {i = 2}^{n-1} f(n - i + 1) \cr & = \frac{1}{n} (1.0 + \sum_ {i = 2}^{n-1} f(n - i + 1)) \end{aligned } $
43
43
44
44
接下来我们从等式中寻找规律,消去 $\sum_ {i = 2}^{n-1} f(n - i + 1))$ 部分。
45
45
46
46
将 $n$ 换为 $n - 1$,得:
47
47
48
- $\begin{align} f(n - 1) & = \frac{1}{n - 1} * 1.0 + \frac{1}{n - 1} * 0.0 + \frac{1}{n - 1} * \sum_ {i = 2}^{n-2} f(n - i) \\ & = \frac{1}{n - 1} (1.0 + \sum_ {i = 2}^{n-2} f(n - i)) \end{align} $
48
+ $\begin{align} f(n - 1) & = \frac{1}{n - 1} * 1.0 + \frac{1}{n - 1} * 0.0 + \frac{1}{n - 1} * \sum_ {i = 2}^{n-2} f(n - i) \cr & = \frac{1}{n - 1} (1.0 + \sum_ {i = 2}^{n-2} f(n - i)) \end{align} $
49
49
50
50
将 $f(n) * n$ 与 $f(n - 1) * (n - 1)$ 进行比较:
51
51
52
- $\begin{align } f(n) * n & = 1.0 + \sum_ {i = 2}^{n-1} f(n - i + 1)) & (1) \\ f(n - 1) * (n - 1) & = 1.0 + \sum_ {i = 2}^{n-2} f(n - i) & (2) \end{align }$
52
+ $\begin{aligned } f(n) * n & = 1.0 + \sum_ {i = 2}^{n-1} f(n - i + 1)) & (1) \cr f(n - 1) * (n - 1) & = 1.0 + \sum_ {i = 2}^{n-2} f(n - i) & (2) \end{aligned }$
53
53
54
54
将上述 (1)、(2) 式相减得:
55
55
56
- $\begin{align} & f(n) * n - f(n - 1) * (n - 1) & \\ = & \sum_ {i = 2}^{n-1} f(n - i + 1) - \sum_ {i = 2}^{n-2} f(n - i) \\ = & f(n-1) \end{align}$
56
+ $\begin{align} & f(n) * n - f(n - 1) * (n - 1) & \cr = & \sum_ {i = 2}^{n-1} f(n - i + 1) - \sum_ {i = 2}^{n-2} f(n - i) \cr = & f(n-1) \end{align}$
57
57
58
58
整理后得:$f(n) = f(n - 1)$。
59
59
60
60
已知 $f(1) = 1$,$f(2) = 0.5$,因此当 $n \ge 3$ 时,$f(n) = 0.5$。
61
61
62
62
所以可以得出结论:
63
63
64
- $f(n) = \begin{cases} 1.0 & n = 1 \\ 0.5 & n \ge 2 \end{cases}$
64
+ $f(n) = \begin{cases} 1.0 & n = 1 \cr 0.5 & n \ge 2 \end{cases}$
65
65
66
66
## 代码
67
67
You can’t perform that action at this time.
0 commit comments