|
3 | 3 | "nbformat_minor": 0,
|
4 | 4 | "metadata": {
|
5 | 5 | "kernelspec": {
|
6 |
| - "display_name": "Python 3", |
7 |
| - "language": "python", |
8 |
| - "name": "python3" |
| 6 | + "name": "python3", |
| 7 | + "display_name": "Yandex DataSphere Kernel", |
| 8 | + "language": "python" |
9 | 9 | },
|
10 | 10 | "language_info": {
|
| 11 | + "file_extension": ".py", |
| 12 | + "version": "3.7.7", |
| 13 | + "mimetype": "text/x-python", |
11 | 14 | "codemirror_mode": {
|
12 | 15 | "name": "ipython",
|
13 | 16 | "version": 3
|
14 | 17 | },
|
15 |
| - "file_extension": ".py", |
16 |
| - "mimetype": "text/x-python", |
17 | 18 | "name": "python",
|
18 | 19 | "nbconvert_exporter": "python",
|
19 |
| - "pygments_lexer": "ipython3", |
20 |
| - "version": "3.6.4" |
| 20 | + "pygments_lexer": "ipython3" |
21 | 21 | },
|
22 | 22 | "colab": {
|
23 |
| - "name": "how_to_shoot_yourself_in_the_foot_with_cnn.ipynb", |
| 23 | + "name": "how_to_shoot_yourself_in_the_foot_with_cnn (4).ipynb", |
24 | 24 | "provenance": []
|
25 |
| - } |
| 25 | + }, |
| 26 | + "notebookId": "8f3ba1c3-68b2-462d-8050-ac7d2972fee2" |
26 | 27 | },
|
27 | 28 | "cells": [
|
28 | 29 | {
|
29 | 30 | "cell_type": "code",
|
30 | 31 | "metadata": {
|
31 | 32 | "id": "A9knWAIelap5",
|
32 |
| - "colab_type": "code", |
33 |
| - "colab": {} |
| 33 | + "cellId": "24wzuqlj89wm4ahvxi57j", |
| 34 | + "trusted": true |
34 | 35 | },
|
35 | 36 | "source": [
|
36 | 37 | "import torch, torch.nn as nn\n",
|
37 | 38 | "import torch.nn.functional as F\n",
|
38 |
| - "from torch.autograd import Variable\n", |
39 |
| - "\n", |
40 |
| - "# a special module that converts [batch, channel, w, h] to [batch, units]\n", |
41 |
| - "class Flatten(nn.Module):\n", |
42 |
| - " def forward(self, input):\n", |
43 |
| - " return input.view(input.size(0), -1)" |
| 39 | + "from torch.autograd import Variable\n" |
44 | 40 | ],
|
45 |
| - "execution_count": 0, |
| 41 | + "execution_count": null, |
46 | 42 | "outputs": []
|
47 | 43 | },
|
48 | 44 | {
|
49 | 45 | "cell_type": "markdown",
|
50 | 46 | "metadata": {
|
51 | 47 | "id": "XxAOHFvglszx",
|
52 |
| - "colab_type": "text" |
| 48 | + "cellId": "2w8bv2xmozhlclkrn7moo" |
53 | 49 | },
|
54 | 50 | "source": [
|
55 | 51 | "[](https://colab.research.google.com/github/yandexdataschool/Practical_DL/blob/spring20/seminar3/how_to_shoot_yourself_in_the_foot_with_cnn.ipynb)"
|
|
59 | 55 | "cell_type": "code",
|
60 | 56 | "metadata": {
|
61 | 57 | "id": "4W6k6Bullap_",
|
62 |
| - "colab_type": "code", |
63 |
| - "colab": {} |
| 58 | + "cellId": "0zngede38s1g2znau62g8d6" |
64 | 59 | },
|
65 | 60 | "source": [
|
66 | 61 | "# assuming input shape [batch, 3, 64, 64]\n",
|
|
74 | 69 | " nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(20,20)),\n",
|
75 | 70 | " nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(20,20)),\n",
|
76 | 71 | " nn.Softmax(),\n",
|
77 |
| - " Flatten(),\n", |
| 72 | + " nn.Flatten(),\n", |
78 | 73 | " nn.Linear(64, 256),\n",
|
79 | 74 | " nn.Softmax(),\n",
|
80 | 75 | " nn.Linear(256, 10),\n",
|
|
83 | 78 | " \n",
|
84 | 79 | ")\n"
|
85 | 80 | ],
|
86 |
| - "execution_count": 0, |
| 81 | + "execution_count": null, |
| 82 | + "outputs": [] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "metadata": { |
| 87 | + "cellId": "7y09x5yxognh7glyjh1wk8", |
| 88 | + "trusted": true, |
| 89 | + "id": "c9i_Hj_ZhWIb" |
| 90 | + }, |
| 91 | + "source": [ |
| 92 | + "import torch, torch.nn as nn\n", |
| 93 | + "import torch.nn.functional as F\n", |
| 94 | + "from torch.autograd import Variable\n", |
| 95 | + "\n", |
| 96 | + "tensor = torch.randn((16, 3, 64, 64), dtype=torch.float)" |
| 97 | + ], |
| 98 | + "execution_count": 1, |
87 | 99 | "outputs": []
|
88 | 100 | },
|
89 | 101 | {
|
90 | 102 | "cell_type": "markdown",
|
91 | 103 | "metadata": {
|
92 | 104 | "id": "xydlW1NSlaqD",
|
93 |
| - "colab_type": "text" |
| 105 | + "cellId": "5yp82sztn9m6jnzw71tvs" |
94 | 106 | },
|
95 | 107 | "source": [
|
96 |
| - "```\n", |
97 |
| - "\n", |
98 |
| - "```\n", |
99 |
| - "\n", |
100 |
| - "```\n", |
101 |
| - "\n", |
102 |
| - "```\n", |
103 |
| - "\n", |
104 |
| - "```\n", |
105 |
| - "\n", |
106 |
| - "```\n", |
| 108 | + "<br>\n", |
| 109 | + "<br>\n", |
| 110 | + "<br>\n", |
| 111 | + "<br>\n", |
| 112 | + "<br>\n", |
| 113 | + "<br>\n", |
| 114 | + "<br>\n", |
| 115 | + "<br>\n", |
| 116 | + "<br>\n", |
| 117 | + "<br>\n", |
| 118 | + "<br>\n", |
| 119 | + "<br>\n", |
| 120 | + "<br>\n", |
| 121 | + "<br>\n", |
| 122 | + "<br>\n", |
| 123 | + "<br>\n", |
| 124 | + "<br>\n", |
| 125 | + "<br>\n", |
| 126 | + "<br>\n", |
| 127 | + "<br>\n", |
| 128 | + "<br>\n", |
| 129 | + "<br>\n", |
| 130 | + "<br>\n", |
| 131 | + "<br>\n", |
| 132 | + "<br>\n", |
| 133 | + "<br>\n", |
| 134 | + "<br>\n", |
| 135 | + "<br>\n", |
| 136 | + "<br>\n", |
| 137 | + "<br>\n", |
| 138 | + "<br>\n", |
| 139 | + "<br>\n", |
| 140 | + "<br>\n", |
| 141 | + "<br>\n", |
| 142 | + "<br>\n", |
| 143 | + "<br>\n", |
| 144 | + "<br>\n", |
| 145 | + "<br>\n", |
| 146 | + "<br>\n", |
| 147 | + "<br>\n", |
| 148 | + "<br>\n", |
| 149 | + "<br>\n", |
| 150 | + "<br>\n", |
| 151 | + "<br>\n", |
| 152 | + "<br>\n", |
107 | 153 | "\n",
|
108 |
| - "```\n", |
109 | 154 | "\n",
|
110 |
| - "```\n", |
111 |
| - "\n", |
112 |
| - "```\n", |
113 |
| - "\n", |
114 |
| - "```\n", |
115 |
| - "\n", |
116 |
| - "```\n", |
117 |
| - "\n", |
118 |
| - "```\n", |
119 |
| - "\n", |
120 |
| - "```\n", |
121 |
| - "\n", |
122 |
| - "```\n", |
123 |
| - "\n", |
124 |
| - "```\n", |
125 |
| - "\n", |
126 |
| - "```\n", |
127 |
| - "\n", |
128 |
| - "```\n", |
129 |
| - "\n", |
130 |
| - "```\n", |
131 |
| - "\n", |
132 |
| - "```\n", |
133 |
| - "\n", |
134 |
| - "```\n", |
135 |
| - "\n", |
136 |
| - "```\n", |
137 |
| - "\n", |
138 |
| - "```\n", |
139 |
| - "\n", |
140 |
| - "```\n", |
141 | 155 | "\n",
|
142 | 156 | "```\n",
|
143 | 157 | "\n",
|
|
168 | 182 | "cell_type": "code",
|
169 | 183 | "metadata": {
|
170 | 184 | "id": "E84fiu7ZlaqE",
|
171 |
| - "colab_type": "code", |
172 |
| - "colab": {} |
| 185 | + "cellId": "uwnr6ieobyxcbccqdaz1f" |
173 | 186 | },
|
174 | 187 | "source": [
|
175 | 188 | ""
|
176 | 189 | ],
|
177 |
| - "execution_count": 0, |
| 190 | + "execution_count": null, |
178 | 191 | "outputs": []
|
179 | 192 | }
|
180 | 193 | ]
|
|
0 commit comments