|
764 | 764 | "source": [
|
765 | 765 | "#noise tests\n",
|
766 | 766 | "theoretical_std = (X[:100].std()**2 + 0.5**2)**.5\n",
|
767 |
| - "our_std = apply_gaussian_noise(X[:100],sigma=0.5).std()\n", |
| 767 | + "our_std = apply_gaussian_noise(torch.from_numpy(X[:100]),sigma=0.5).std()\n", |
768 | 768 | "assert abs(theoretical_std - our_std) < 0.01, \"Standard deviation does not match it's required value. Make sure you use sigma as std.\"\n",
|
769 |
| - "assert abs(apply_gaussian_noise(X[:100],sigma=0.5).mean() - X[:100].mean()) < 0.01, \"Mean has changed. Please add zero-mean noise\"" |
| 769 | + "assert abs(apply_gaussian_noise(torch.from_numpy(X[:100]),sigma=0.5).mean() - torch.from_numpy(X[:100]).mean()) < 0.01, \"Mean has changed. Please add zero-mean noise\"" |
770 | 770 | ]
|
771 | 771 | },
|
772 | 772 | {
|
|
801 | 801 | "plt.subplot(1,4,1)\n",
|
802 | 802 | "plt.imshow(X[0].transpose([1,2,0]))\n",
|
803 | 803 | "plt.subplot(1,4,2)\n",
|
804 |
| - "plt.imshow(apply_gaussian_noise(X[:1],sigma=0.01).data.numpy()[0].transpose([1,2,0]).clip(0, 1))\n", |
| 804 | + "plt.imshow(apply_gaussian_noise(torch.from_numpy(X[:1]),sigma=0.01).data.numpy()[0].transpose([1,2,0]).clip(0, 1))\n", |
805 | 805 | "plt.subplot(1,4,3)\n",
|
806 |
| - "plt.imshow(apply_gaussian_noise(X[:1],sigma=0.1).data.numpy()[0].transpose([1,2,0]).clip(0, 1))\n", |
| 806 | + "plt.imshow(apply_gaussian_noise(torch.from_numpy(X[:1]),sigma=0.1).data.numpy()[0].transpose([1,2,0]).clip(0, 1))\n", |
807 | 807 | "plt.subplot(1,4,4)\n",
|
808 |
| - "plt.imshow(apply_gaussian_noise(X[:1],sigma=0.5).data.numpy()[0].transpose([1,2,0]).clip(0, 1))" |
| 808 | + "plt.imshow(apply_gaussian_noise(torch.from_numpy(X[:1]),sigma=0.5).data.numpy()[0].transpose([1,2,0]).clip(0, 1))" |
809 | 809 | ]
|
810 | 810 | },
|
811 | 811 | {
|
|
0 commit comments