|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import torch, torch.nn as nn\n", |
| 12 | + "import torch.nn.functional as F\n", |
| 13 | + "from torch.autograd import Variable\n", |
| 14 | + "\n", |
| 15 | + "# a special module that converts [batch, channel, w, h] to [batch, units]\n", |
| 16 | + "class Flatten(nn.Module):\n", |
| 17 | + " def forward(self, input):\n", |
| 18 | + " return input.view(input.size(0), -1)" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 6, |
| 24 | + "metadata": { |
| 25 | + "collapsed": true |
| 26 | + }, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "# assuming input shape [batch, 3, 64, 64]\n", |
| 30 | + "cnn = nn.Sequential(\n", |
| 31 | + " nn.Conv2d(in_channels=3, out_channels=2048, kernel_size=(3,3)),\n", |
| 32 | + " nn.Conv2d(in_channels=2048, out_channels=1024, kernel_size=(3,3)),\n", |
| 33 | + " nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=(3,3)),\n", |
| 34 | + " nn.ReLU(),\n", |
| 35 | + " nn.MaxPool2d((6,6)),\n", |
| 36 | + " nn.Conv2d(in_channels=6, out_channels=32, kernel_size=(20,20)),\n", |
| 37 | + " nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(20,20)),\n", |
| 38 | + " nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(20,20)),\n", |
| 39 | + " nn.Softmax(),\n", |
| 40 | + " Flatten(),\n", |
| 41 | + " nn.Linear(64, 256),\n", |
| 42 | + " nn.Softmax(),\n", |
| 43 | + " nn.Linear(256, 10),\n", |
| 44 | + " nn.Sigmoid(),\n", |
| 45 | + " nn.Dropout(0.5)\n", |
| 46 | + " \n", |
| 47 | + ")\n" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "markdown", |
| 52 | + "metadata": {}, |
| 53 | + "source": [ |
| 54 | + "```\n", |
| 55 | + "\n", |
| 56 | + "```\n", |
| 57 | + "\n", |
| 58 | + "```\n", |
| 59 | + "\n", |
| 60 | + "```\n", |
| 61 | + "\n", |
| 62 | + "```\n", |
| 63 | + "\n", |
| 64 | + "```\n", |
| 65 | + "\n", |
| 66 | + "```\n", |
| 67 | + "\n", |
| 68 | + "```\n", |
| 69 | + "\n", |
| 70 | + "```\n", |
| 71 | + "\n", |
| 72 | + "```\n", |
| 73 | + "\n", |
| 74 | + "```\n", |
| 75 | + "\n", |
| 76 | + "```\n", |
| 77 | + "\n", |
| 78 | + "```\n", |
| 79 | + "\n", |
| 80 | + "```\n", |
| 81 | + "\n", |
| 82 | + "```\n", |
| 83 | + "\n", |
| 84 | + "```\n", |
| 85 | + "\n", |
| 86 | + "```\n", |
| 87 | + "\n", |
| 88 | + "```\n", |
| 89 | + "\n", |
| 90 | + "```\n", |
| 91 | + "\n", |
| 92 | + "```\n", |
| 93 | + "\n", |
| 94 | + "```\n", |
| 95 | + "\n", |
| 96 | + "```\n", |
| 97 | + "\n", |
| 98 | + "```\n", |
| 99 | + "\n", |
| 100 | + "```\n", |
| 101 | + "\n", |
| 102 | + "```\n", |
| 103 | + "\n", |
| 104 | + "```\n", |
| 105 | + "\n", |
| 106 | + "```\n", |
| 107 | + "\n", |
| 108 | + "```\n", |
| 109 | + "\n", |
| 110 | + "```\n", |
| 111 | + "\n", |
| 112 | + "```\n", |
| 113 | + "\n", |
| 114 | + "\n", |
| 115 | + "# Book of grudges\n", |
| 116 | + "* Input channels are wrong literally half the time (after pooling, after flatten).\n", |
| 117 | + "* Too many filters for first 3x3 convolution - will lead to enormous matrix while there's just not enough relevant combinations of 3x3 images (overkill).\n", |
| 118 | + "* Usually the further you go, the more filters you need.\n", |
| 119 | + "* large filters (10x10 is generally a bad pactice, and you definitely need more than 10 of them\n", |
| 120 | + "* the second of 10x10 convolution gets 8x6x6 image as input, so it's technically unable to perform such convolution.\n", |
| 121 | + "* Softmax nonlinearity effectively makes only 1 or a few neurons from the entire layer to \"fire\", rendering 512-neuron layer almost useless. Softmax at the output layer is okay though\n", |
| 122 | + "* Dropout after probability prediciton is just lame. A few random classes get probability of 0, so your probabilities no longer sum to 1 and crossentropy goes -inf." |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "metadata": { |
| 129 | + "collapsed": true |
| 130 | + }, |
| 131 | + "outputs": [], |
| 132 | + "source": [] |
| 133 | + } |
| 134 | + ], |
| 135 | + "metadata": { |
| 136 | + "kernelspec": { |
| 137 | + "display_name": "Python 3", |
| 138 | + "language": "python", |
| 139 | + "name": "python3" |
| 140 | + }, |
| 141 | + "language_info": { |
| 142 | + "codemirror_mode": { |
| 143 | + "name": "ipython", |
| 144 | + "version": 3 |
| 145 | + }, |
| 146 | + "file_extension": ".py", |
| 147 | + "mimetype": "text/x-python", |
| 148 | + "name": "python", |
| 149 | + "nbconvert_exporter": "python", |
| 150 | + "pygments_lexer": "ipython3", |
| 151 | + "version": "3.6.4" |
| 152 | + } |
| 153 | + }, |
| 154 | + "nbformat": 4, |
| 155 | + "nbformat_minor": 1 |
| 156 | +} |
0 commit comments