|
| 1 | +// <copyright file="MovingStatistics.cs" company="Math.NET"> |
| 2 | +// Math.NET Numerics, part of the Math.NET Project |
| 3 | +// http://numerics.mathdotnet.com |
| 4 | +// http://github.com/mathnet/mathnet-numerics |
| 5 | +// http://mathnetnumerics.codeplex.com |
| 6 | +// |
| 7 | +// Copyright (c) 2009-2015 Math.NET |
| 8 | +// |
| 9 | +// Permission is hereby granted, free of charge, to any person |
| 10 | +// obtaining a copy of this software and associated documentation |
| 11 | +// files (the "Software"), to deal in the Software without |
| 12 | +// restriction, including without limitation the rights to use, |
| 13 | +// copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 14 | +// copies of the Software, and to permit persons to whom the |
| 15 | +// Software is furnished to do so, subject to the following |
| 16 | +// conditions: |
| 17 | +// |
| 18 | +// The above copyright notice and this permission notice shall be |
| 19 | +// included in all copies or substantial portions of the Software. |
| 20 | +// |
| 21 | +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 22 | +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
| 23 | +// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 24 | +// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |
| 25 | +// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
| 26 | +// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 27 | +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 28 | +// OTHER DEALINGS IN THE SOFTWARE. |
| 29 | +// </copyright> |
| 30 | + |
| 31 | +using System; |
| 32 | +using System.Collections.Generic; |
| 33 | +using MathNet.Numerics.Properties; |
| 34 | + |
| 35 | +namespace MathNet.Numerics.Statistics |
| 36 | +{ |
| 37 | + /// <summary> |
| 38 | + /// Running statistics over a window of data, allows updating by adding values. |
| 39 | + /// </summary> |
| 40 | + public class MovingStatistics |
| 41 | + { |
| 42 | + readonly double[] _oldValues; |
| 43 | + readonly int _windowSize; |
| 44 | + |
| 45 | + long _count; |
| 46 | + long _totalCountOffset; |
| 47 | + int _lastIndex; |
| 48 | + int _lastNaNTimeToLive; |
| 49 | + int _lastPosInfTimeToLive; |
| 50 | + int _lastNegInfTimeToLive; |
| 51 | + |
| 52 | + double _m1; |
| 53 | + double _m2; |
| 54 | + double _max = double.NegativeInfinity; |
| 55 | + double _min = double.PositiveInfinity; |
| 56 | + |
| 57 | + public MovingStatistics(int windowSize) |
| 58 | + { |
| 59 | + if (windowSize < 1) |
| 60 | + { |
| 61 | + throw new ArgumentException(string.Format(Resources.ArgumentMustBePositive), "windowSize"); |
| 62 | + } |
| 63 | + _windowSize = windowSize; |
| 64 | + _oldValues = new double[_windowSize]; |
| 65 | + } |
| 66 | + |
| 67 | + public MovingStatistics(int windowSize, IEnumerable<double> values) |
| 68 | + : this(windowSize) |
| 69 | + { |
| 70 | + PushRange(values); |
| 71 | + } |
| 72 | + |
| 73 | + public int WindowSize |
| 74 | + { |
| 75 | + get { return _windowSize; } |
| 76 | + } |
| 77 | + |
| 78 | + /// <summary> |
| 79 | + /// Gets the total number of samples. |
| 80 | + /// </summary> |
| 81 | + public long Count |
| 82 | + { |
| 83 | + get { return _totalCountOffset + _count; } |
| 84 | + } |
| 85 | + |
| 86 | + /// <summary> |
| 87 | + /// Returns the minimum value in the sample data. |
| 88 | + /// Returns NaN if data is empty or if any entry is NaN. |
| 89 | + /// </summary> |
| 90 | + public double Minimum |
| 91 | + { |
| 92 | + get |
| 93 | + { |
| 94 | + if (_lastNaNTimeToLive > 0) |
| 95 | + { |
| 96 | + return double.NaN; |
| 97 | + } |
| 98 | + |
| 99 | + if (_lastNegInfTimeToLive > 0) |
| 100 | + { |
| 101 | + return double.NegativeInfinity; |
| 102 | + } |
| 103 | + |
| 104 | + return (_count > 0 || _lastPosInfTimeToLive > 0) ? _min : double.NaN; |
| 105 | + } |
| 106 | + } |
| 107 | + |
| 108 | + /// <summary> |
| 109 | + /// Returns the maximum value in the sample data. |
| 110 | + /// Returns NaN if data is empty or if any entry is NaN. |
| 111 | + /// </summary> |
| 112 | + public double Maximum |
| 113 | + { |
| 114 | + get |
| 115 | + { |
| 116 | + if (_lastNaNTimeToLive > 0) |
| 117 | + { |
| 118 | + return double.NaN; |
| 119 | + } |
| 120 | + |
| 121 | + if (_lastPosInfTimeToLive > 0) |
| 122 | + { |
| 123 | + return double.PositiveInfinity; |
| 124 | + } |
| 125 | + |
| 126 | + return (_count > 0 || _lastNegInfTimeToLive > 0) ? _max : double.NaN; |
| 127 | + } |
| 128 | + } |
| 129 | + |
| 130 | + /// <summary> |
| 131 | + /// Evaluates the sample mean, an estimate of the population mean. |
| 132 | + /// Returns NaN if data is empty or if any entry is NaN. |
| 133 | + /// </summary> |
| 134 | + public double Mean |
| 135 | + { |
| 136 | + get |
| 137 | + { |
| 138 | + if (_lastNaNTimeToLive > 0 || (_lastPosInfTimeToLive > 0 && _lastNegInfTimeToLive > 0)) |
| 139 | + { |
| 140 | + return double.NaN; |
| 141 | + } |
| 142 | + |
| 143 | + if (_lastPosInfTimeToLive > 0) |
| 144 | + { |
| 145 | + return double.PositiveInfinity; |
| 146 | + } |
| 147 | + |
| 148 | + if (_lastNegInfTimeToLive > 0) |
| 149 | + { |
| 150 | + return double.NegativeInfinity; |
| 151 | + } |
| 152 | + |
| 153 | + return _count == 0 ? double.NaN : _m1; |
| 154 | + } |
| 155 | + } |
| 156 | + |
| 157 | + /// <summary> |
| 158 | + /// Estimates the unbiased population variance from the provided samples. |
| 159 | + /// On a dataset of size N will use an N-1 normalizer (Bessel's correction). |
| 160 | + /// Returns NaN if data has less than two entries or if any entry is NaN. |
| 161 | + /// </summary> |
| 162 | + public double Variance |
| 163 | + { |
| 164 | + get |
| 165 | + { |
| 166 | + if (_lastNaNTimeToLive > 0 || _lastNegInfTimeToLive > 0 || (_lastPosInfTimeToLive > 0 && _lastNegInfTimeToLive > 0)) |
| 167 | + { |
| 168 | + return double.NaN; |
| 169 | + } |
| 170 | + |
| 171 | + if (_lastPosInfTimeToLive > 0) |
| 172 | + { |
| 173 | + return double.PositiveInfinity; |
| 174 | + } |
| 175 | + |
| 176 | + return _count < 2 ? double.NaN : _m2 / (_count - 1); |
| 177 | + } |
| 178 | + } |
| 179 | + |
| 180 | + /// <summary> |
| 181 | + /// Evaluates the variance from the provided full population. |
| 182 | + /// On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset. |
| 183 | + /// Returns NaN if data is empty or if any entry is NaN. |
| 184 | + /// </summary> |
| 185 | + public double PopulationVariance |
| 186 | + { |
| 187 | + get |
| 188 | + { |
| 189 | + if (_lastNaNTimeToLive > 0 || _lastNegInfTimeToLive > 0 || (_lastPosInfTimeToLive > 0 && _lastNegInfTimeToLive > 0)) |
| 190 | + { |
| 191 | + return double.NaN; |
| 192 | + } |
| 193 | + |
| 194 | + if (_lastPosInfTimeToLive > 0) |
| 195 | + { |
| 196 | + return double.PositiveInfinity; |
| 197 | + } |
| 198 | + |
| 199 | + return _count < 2 ? double.NaN : _m2 / _count; |
| 200 | + } |
| 201 | + } |
| 202 | + |
| 203 | + /// <summary> |
| 204 | + /// Estimates the unbiased population standard deviation from the provided samples. |
| 205 | + /// On a dataset of size N will use an N-1 normalizer (Bessel's correction). |
| 206 | + /// Returns NaN if data has less than two entries or if any entry is NaN. |
| 207 | + /// </summary> |
| 208 | + public double StandardDeviation |
| 209 | + { |
| 210 | + get |
| 211 | + { |
| 212 | + if (_lastNaNTimeToLive > 0 || _lastNegInfTimeToLive > 0 || (_lastPosInfTimeToLive > 0 && _lastNegInfTimeToLive > 0)) |
| 213 | + { |
| 214 | + return double.NaN; |
| 215 | + } |
| 216 | + |
| 217 | + if (_lastPosInfTimeToLive > 0) |
| 218 | + { |
| 219 | + return double.PositiveInfinity; |
| 220 | + } |
| 221 | + |
| 222 | + return _count < 2 ? double.NaN : Math.Sqrt(_m2 / (_count - 1)); |
| 223 | + } |
| 224 | + } |
| 225 | + |
| 226 | + /// <summary> |
| 227 | + /// Evaluates the standard deviation from the provided full population. |
| 228 | + /// On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset. |
| 229 | + /// Returns NaN if data is empty or if any entry is NaN. |
| 230 | + /// </summary> |
| 231 | + public double PopulationStandardDeviation |
| 232 | + { |
| 233 | + get |
| 234 | + { |
| 235 | + if (_lastNaNTimeToLive > 0 || _lastNegInfTimeToLive > 0 || (_lastPosInfTimeToLive > 0 && _lastNegInfTimeToLive > 0)) |
| 236 | + { |
| 237 | + return double.NaN; |
| 238 | + } |
| 239 | + |
| 240 | + if (_lastPosInfTimeToLive > 0) |
| 241 | + { |
| 242 | + return double.PositiveInfinity; |
| 243 | + } |
| 244 | + |
| 245 | + return _count < 2 ? double.NaN : Math.Sqrt(_m2 / _count); |
| 246 | + } |
| 247 | + } |
| 248 | + |
| 249 | + /// <summary> |
| 250 | + /// Update the running statistics by adding another observed sample (in-place). |
| 251 | + /// </summary> |
| 252 | + public void Push(double value) |
| 253 | + { |
| 254 | + DecrementTimeToLive(); |
| 255 | + |
| 256 | + if (double.IsNaN(value)) |
| 257 | + { |
| 258 | + _lastNaNTimeToLive = _windowSize; |
| 259 | + Reset(double.PositiveInfinity, double.NegativeInfinity); |
| 260 | + return; |
| 261 | + } |
| 262 | + |
| 263 | + if (double.IsPositiveInfinity(value)) |
| 264 | + { |
| 265 | + _lastPosInfTimeToLive = _windowSize; |
| 266 | + Reset(_min, double.NegativeInfinity); |
| 267 | + return; |
| 268 | + } |
| 269 | + |
| 270 | + if (double.IsNegativeInfinity(value)) |
| 271 | + { |
| 272 | + _lastNegInfTimeToLive = _windowSize; |
| 273 | + Reset(double.PositiveInfinity, _max); |
| 274 | + return; |
| 275 | + } |
| 276 | + |
| 277 | + if (_count < _windowSize) |
| 278 | + { |
| 279 | + _oldValues[_count] = value; |
| 280 | + _count++; |
| 281 | + var d = value - _m1; |
| 282 | + var s = d / _count; |
| 283 | + var t = d * s * (_count - 1); |
| 284 | + |
| 285 | + _m1 += s; |
| 286 | + _m2 += t; |
| 287 | + |
| 288 | + if (value < _min) |
| 289 | + { |
| 290 | + _min = value; |
| 291 | + } |
| 292 | + |
| 293 | + if (value > _max) |
| 294 | + { |
| 295 | + _max = value; |
| 296 | + } |
| 297 | + } |
| 298 | + else |
| 299 | + { |
| 300 | + var oldValue = _oldValues[_lastIndex]; |
| 301 | + var d = value - oldValue; |
| 302 | + var s = d / _count; |
| 303 | + var oldM1 = _m1; |
| 304 | + _m1 += s; |
| 305 | + |
| 306 | + var x = (value - _m1 + oldValue - oldM1); |
| 307 | + var t = d * x; |
| 308 | + _m2 += t; |
| 309 | + |
| 310 | + _oldValues[_lastIndex] = value; |
| 311 | + _lastIndex++; |
| 312 | + if (_lastIndex == WindowSize) |
| 313 | + { |
| 314 | + _lastIndex = 0; |
| 315 | + } |
| 316 | + _max = value > _max ? value : _oldValues.Maximum(); |
| 317 | + _min = value < _min ? value : _oldValues.Minimum(); |
| 318 | + } |
| 319 | + } |
| 320 | + |
| 321 | + /// <summary> |
| 322 | + /// Update the running statistics by adding a sequence of observed sample (in-place). |
| 323 | + /// </summary> |
| 324 | + public void PushRange(IEnumerable<double> values) |
| 325 | + { |
| 326 | + foreach (var value in values) |
| 327 | + { |
| 328 | + Push(value); |
| 329 | + } |
| 330 | + } |
| 331 | + |
| 332 | + private void DecrementTimeToLive() |
| 333 | + { |
| 334 | + if (_lastNaNTimeToLive > 0) |
| 335 | + { |
| 336 | + _lastNaNTimeToLive--; |
| 337 | + } |
| 338 | + |
| 339 | + if (_lastPosInfTimeToLive > 0) |
| 340 | + { |
| 341 | + _lastPosInfTimeToLive--; |
| 342 | + } |
| 343 | + |
| 344 | + if (_lastNegInfTimeToLive > 0) |
| 345 | + { |
| 346 | + _lastNegInfTimeToLive--; |
| 347 | + } |
| 348 | + } |
| 349 | + |
| 350 | + private void Reset(double min, double max) |
| 351 | + { |
| 352 | + _totalCountOffset += _count + 1; |
| 353 | + _count = 0; |
| 354 | + _m1 = 0; |
| 355 | + _max = max; |
| 356 | + _min = min; |
| 357 | + } |
| 358 | + } |
| 359 | +} |
0 commit comments