|
| 1 | +#!/usr/bin/env python |
| 2 | +""" |
| 3 | +@author Jesse Haviland |
| 4 | +""" |
| 5 | + |
| 6 | +import roboticstoolbox as rp |
| 7 | +import spatialmath as sm |
| 8 | +import numpy as np |
| 9 | +import time |
| 10 | +import qpsolvers as qp |
| 11 | +import pybullet as p |
| 12 | +import matplotlib |
| 13 | +import matplotlib.pyplot as plt |
| 14 | +import pickle |
| 15 | + |
| 16 | +matplotlib.rcParams['pdf.fonttype'] = 42 |
| 17 | +matplotlib.rcParams['ps.fonttype'] = 42 |
| 18 | +plt.style.use('ggplot') |
| 19 | +matplotlib.rcParams['font.size'] = 4.5 |
| 20 | +matplotlib.rcParams['lines.linewidth'] = 0.5 |
| 21 | +matplotlib.rcParams['xtick.major.size'] = 1.5 |
| 22 | +matplotlib.rcParams['ytick.major.size'] = 1.5 |
| 23 | +matplotlib.rcParams['axes.labelpad'] = 1 |
| 24 | +plt.rc('grid', linestyle="-", color='#dbdbdb') |
| 25 | + |
| 26 | +fig, ax = plt.subplots() |
| 27 | +fig.set_size_inches(2.5, 1.5) |
| 28 | + |
| 29 | +ax.set(xlabel='Time (s)', ylabel='Distance (m)') |
| 30 | +ax.grid() |
| 31 | +plt.grid(True) |
| 32 | +ax.set_xlim(xmin=0, xmax=12.1) |
| 33 | +ax.set_ylim(ymin=0, ymax=0.7) |
| 34 | +plt.subplots_adjust(left=0.13, bottom=0.18, top=0.95, right=1) |
| 35 | + |
| 36 | + |
| 37 | +pld0 = ax.plot( |
| 38 | + [0], [0], label='Distance to Obstacle 1') |
| 39 | + |
| 40 | +pld1 = ax.plot( |
| 41 | + [0], [0], label='Distance to Obstacle 2') |
| 42 | + |
| 43 | +pld2 = ax.plot( |
| 44 | + [0], [0], label='Distance to Goal') |
| 45 | + |
| 46 | +plm = ax.plot( |
| 47 | + [0], [0], label='Manipuability') |
| 48 | + |
| 49 | +ax.legend() |
| 50 | +ax.legend(loc="lower right") |
| 51 | + |
| 52 | +plt.ion() |
| 53 | +plt.show() |
| 54 | + |
| 55 | +qdmax = np.array([ |
| 56 | + 2.1750, 2.1750, 2.1750, 2.1750, 2.6100, 2.6100, 2.6100, |
| 57 | + 5000000, 5000000, 5000000, 5000000, 5000000, 5000000]) |
| 58 | +lb = -qdmax |
| 59 | +ub = qdmax |
| 60 | + |
| 61 | +q0 = [-0.5653, -0.1941, -1.2602, -0.7896, -2.3227, -0.3919, -2.5173] |
| 62 | + |
| 63 | +s0 = rp.Shape.Sphere( |
| 64 | + radius=0.05, |
| 65 | + base=sm.SE3(0.45, 0.4, 0.3) |
| 66 | +) |
| 67 | + |
| 68 | +s1 = rp.Shape.Sphere( |
| 69 | + radius=0.05, |
| 70 | + base=sm.SE3(0.1, 0.35, 0.65) |
| 71 | +) |
| 72 | + |
| 73 | +s2 = rp.Shape.Sphere( |
| 74 | + radius=0.02, |
| 75 | + base=sm.SE3(0.3, 0, 0) |
| 76 | +) |
| 77 | + |
| 78 | +s0.v = [0.01, -0.2, 0, 0, 0, 0] |
| 79 | +# s1.v = [0, -0.2, 0, 0, 0, 0] |
| 80 | +# s2.v = [0, 0.1, 0, 0, 0, 0] |
| 81 | + |
| 82 | +env = rp.backend.Swift() |
| 83 | +env.launch() |
| 84 | + |
| 85 | +r = rp.models.Panda() |
| 86 | + |
| 87 | +n = 7 |
| 88 | +env.add(r) |
| 89 | +env.add(s0) |
| 90 | +# env.add(s1) |
| 91 | +env.add(s2) |
| 92 | +time.sleep(1) |
| 93 | + |
| 94 | + |
| 95 | +s0.x = [] |
| 96 | +s1.x = [] |
| 97 | +s2.x = [] |
| 98 | +s0.y = [] |
| 99 | +s1.y = [] |
| 100 | +s2.y = [] |
| 101 | +m = [] |
| 102 | + |
| 103 | +def update_graph2(ob, graph): |
| 104 | + # Update the robot links |
| 105 | + |
| 106 | + graph[0].set_xdata(ob.x) |
| 107 | + graph[0].set_ydata(ob.y) |
| 108 | + |
| 109 | + |
| 110 | +def link_calc(link, col, ob, q): |
| 111 | + dii = 5 |
| 112 | + di = 0.3 |
| 113 | + ds = 0.05 |
| 114 | + |
| 115 | + ret = p.getClosestPoints(col.co, ob.co, dii) |
| 116 | + |
| 117 | + if len(ret) > 0: |
| 118 | + ret = ret[0] |
| 119 | + wTlp = sm.SE3(ret[5]) |
| 120 | + wTcp = sm.SE3(ret[6]) |
| 121 | + lpTcp = wTlp.inv() * wTcp |
| 122 | + |
| 123 | + d = ret[8] |
| 124 | + |
| 125 | + if d < di: |
| 126 | + n = lpTcp.t / d |
| 127 | + nh = np.expand_dims(np.r_[n, 0, 0, 0], axis=0) |
| 128 | + |
| 129 | + Je = r.jacobe(q, from_link=r.base_link, to_link=link, offset=col.base) |
| 130 | + n = Je.shape[1] |
| 131 | + dp = nh @ ob.v |
| 132 | + l_Ain = np.zeros((1, 13)) |
| 133 | + l_Ain[0, :n] = nh @ Je |
| 134 | + l_bin = (0.8 * (d - ds) / (di - ds)) + dp |
| 135 | + else: |
| 136 | + l_Ain = None |
| 137 | + l_bin = None |
| 138 | + |
| 139 | + return l_Ain, l_bin, d, wTcp |
| 140 | + |
| 141 | + |
| 142 | +def servo(q0, Tep, it): |
| 143 | + |
| 144 | + r.q = q0 |
| 145 | + r.fkine_all() |
| 146 | + r.qd = np.zeros(r.n) |
| 147 | + env.step(1) |
| 148 | + links = r._fkpath[1:] |
| 149 | + |
| 150 | + arrived = False |
| 151 | + i = 0 |
| 152 | + Q = 0.1 * np.eye(n + 6) |
| 153 | + |
| 154 | + while not arrived and i < it: |
| 155 | + |
| 156 | + if i > (4 / 0.05): |
| 157 | + s2.v = [0, 0, 0, 0, 0, 0] |
| 158 | + |
| 159 | + Tep.A[:3, 3] = s2.base.t |
| 160 | + Tep.A[2, 3] += 0.1 |
| 161 | + q = r.q |
| 162 | + v, arrived = rp.p_servo(r.fkine(), Tep, 0.5, 0.05) |
| 163 | + |
| 164 | + eTep = r.fkine().inv() * Tep |
| 165 | + e = np.sum(np.abs(np.r_[eTep.t, eTep.rpy() * np.pi/180])) |
| 166 | + |
| 167 | + Q[n:, n:] = 1 * (1 / e) * np.eye(6) |
| 168 | + Aeq = np.c_[r.jacobe(), np.eye(6)] |
| 169 | + beq = v.reshape((6,)) |
| 170 | + Jm = r.jacobm().reshape(7,) |
| 171 | + c = np.r_[-Jm, np.zeros(6)] |
| 172 | + |
| 173 | + Ain = None |
| 174 | + bin = None |
| 175 | + |
| 176 | + closest = 1000000 |
| 177 | + closest_obj = None |
| 178 | + closest_p = None |
| 179 | + j = 0 |
| 180 | + for link in links: |
| 181 | + if link.jtype == link.VARIABLE: |
| 182 | + j += 1 |
| 183 | + for col in link.collision: |
| 184 | + obj = s0 |
| 185 | + l_Ain, l_bin, ret, wTcp = link_calc(link, col, obj, q[:j]) |
| 186 | + if ret < closest: |
| 187 | + closest = ret |
| 188 | + closest_obj = obj |
| 189 | + closest_p = wTcp |
| 190 | + |
| 191 | + if l_Ain is not None and l_bin is not None: |
| 192 | + if Ain is None: |
| 193 | + Ain = l_Ain |
| 194 | + else: |
| 195 | + Ain = np.r_[Ain, l_Ain] |
| 196 | + |
| 197 | + if bin is None: |
| 198 | + bin = np.array(l_bin) |
| 199 | + else: |
| 200 | + bin = np.r_[bin, l_bin] |
| 201 | + |
| 202 | + s0.y.append(closest) |
| 203 | + s0.x.append(i * 0.05) |
| 204 | + |
| 205 | + s2.y.append(np.linalg.norm(eTep.t)) |
| 206 | + s2.x.append(i * 0.05) |
| 207 | + m.append(r.manipulability()) |
| 208 | + |
| 209 | + |
| 210 | + try: |
| 211 | + qd = qp.solve_qp(Q, c, Ain, bin, Aeq, beq, lb=lb, ub=ub) |
| 212 | + except (ValueError, TypeError): |
| 213 | + print("Value Error") |
| 214 | + break |
| 215 | + |
| 216 | + r.qd = qd[:7] |
| 217 | + |
| 218 | + i += 1 |
| 219 | + env.step(50) |
| 220 | + |
| 221 | + # r.loc = np.c_[r.loc, r.fkine().t] |
| 222 | + # s0.loc = np.c_[s0.loc, s0.base.t] |
| 223 | + # s1.loc = np.c_[s1.loc, s1.base.t] |
| 224 | + # s2.loc = np.c_[s2.loc, s2.base.t] |
| 225 | + |
| 226 | + # update_graph2(r, plr) |
| 227 | + update_graph2(s0, pld0) |
| 228 | + update_graph2(s2, pld2) |
| 229 | + plm[0].set_xdata(s2.x) |
| 230 | + plm[0].set_ydata(m) |
| 231 | + plt.pause(0.001) |
| 232 | + |
| 233 | + return arrived |
| 234 | + |
| 235 | + |
| 236 | +q0 = r.qr |
| 237 | +r.q = q0 |
| 238 | + |
| 239 | +s2.base = sm.SE3.Tx(0.6) * sm.SE3.Tz(0.1) * sm.SE3.Ty(-0.2) * sm.SE3.Tz(-0.1) |
| 240 | + |
| 241 | +Tep = r.fkine() |
| 242 | +Tep.A[:3, 3] = s2.base.t |
| 243 | + |
| 244 | + |
| 245 | +servo(q0, Tep, 5000) |
| 246 | + |
| 247 | +obj = { |
| 248 | + 's0': [s0.x, s0.y], |
| 249 | + 's1': [s1.x, s1.y], |
| 250 | + 's2': [s2.x, s2.y], |
| 251 | + 'm': [s0.x, m] |
| 252 | +} |
| 253 | + |
| 254 | +pickle.dump(obj, open('neo1.p', 'wb')) |
| 255 | + |
| 256 | +plt.ioff() |
| 257 | +plt.show() |
0 commit comments